
INTRODUCTION

The assessment of neuropsychological deficits
in the individual case normally involves comparing
a patient’s score on a neuropsychological test (e.g.,
number of items correct) with the distribution of
scores obtained from an appropriate control or
normative sample. However, for some
neuropsychological constructs and their related
measurement procedures, it is necessary, or at least
preferable, to quantify performance using the slope
of a regression line. Evaluation of an individual
patient’s performance is made by comparing the
slope obtained from the patient with those of a
normative or control sample. The present paper
develops inferential statistical methods for such
comparisons.

Examples of Neuropsychological Measures where
Performance is expressed as a Slope

An obvious example of the use of slopes to
quantify performance is provided by time
estimation tasks. In such tasks the accuracy of time
estimation is assessed by examining the magnitude
of the slope relating the length of the actual time
intervals and the estimated time intervals. There is
evidence that, particularly when the time intervals
exceed 20 seconds (Richards, 1973; Sherwin and
Effron, 1980), amnesic patients exhibit deficits in
time estimation as indicated by a weakening of the
association between actual and estimated time
(Nichelli et al., 1993; Venneri et al., 1998). Indeed,
in severe cases, the direction of the relationship

can be reversed (e.g., the slope of the regression
line can be negative), thereby indicating that
shorter intervals are estimated as longer.

As another example, in the area of motor
control, there is a robust relationship between
maximum grip aperture when reaching for objects
and the size of the objects (Carey, 1996). An
investigator may wish to determine whether this
relationship breaks down in an individual with
neurological disease. This could be examined by
comparing the slopes of the intra-individual
regression lines (relating object size and aperture
size) obtained from healthy participants with the
slope of the regression line obtained from the
patient. Relatedly, there is a positive relationship
between the peak velocity of manual reaching and
the distance from a target; the further away the
target, the faster the peak velocity (Jeannerod,
1984). Again, an investigator may wish to examine
whether this relationship breaks down in cases with
neurological disease; see Carey et al. (1998) for an
example. 

As a fourth example, in the area of object
recognition, it has been found that there is a robust
intra-individual relationship between the latency
with which an object is named and the degree to
which it is rotated away from its prototypical
orientation (Turnbull et al., 1997). Failure to find
such an association in a patient would suggest that
mental rotation was not being used to achieve
object identification. This can be assessed by
comparing the slope of the regression line relating
degree of rotation to latency of recognition for the
patient with the slopes obtained for controls
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(Turnbull et al., 2002). Distance estimation tasks
provide yet another example from the area of
visual perception. Here the issue would be whether
a patient exhibits an attenuation of the expected
relationship between visually estimated distance
and actual distance (Carey et al., 1998).

Finally, slopes can be used to quantify the
extent to which a patient exhibits a temporal
gradient in their recall of material from the past
(this material can be either autobiographical or
relate to public events). Temporal gradients in
recall (such that events from the distant past are
better recalled than events that occurred in more
recent decades; i.e., the Ribot effect) have been
observed in a variety of conditions associated with
amnesic problems (Greene et al., 1995; Squire and
Alvarez, 1995). For example, suppose a measure of
recall of past events covers five decades, then the
number of events correctly recalled by a patient
could be regressed on the decades (or even the
year) in which the events occurred and the
resultant slope compared to the slopes obtained
from a control sample. It should be noted that a
reversal of the Ribot effect has been reported in
cases of semantic dementia, i.e., these cases show
better recall for the more recent of a series of
events (Hodges and Graham, 1998); the use of
slopes is just as applicable when attempting to
capture this pattern as it is for the pattern more
commonly seen in amnesic patients.

Statistical Methods for Comparing an Individual
with a Control or Normative Sample 

In all of the foregoing examples the slope of
the regression lines were treated as data. It is not
uncommon for slopes to be used in this way. A
particularly pertinent example is provided by
Venneri et al.’s. (1998) study of time estimation in
amnesic and control samples. In this study an
ANOVA was used to compare the means of the
slopes (relating actual elapsed time to estimated
elapsed time) obtained from the amnesic and
control participants.

In the foregoing example, inferential statistics
were used to test differences between two samples.
In contrast, both academic neuropsychologists who
study single cases, and clinical neuropsychologists,
are concerned with comparing an individual with a
normative or control sample. However, just as the
group researcher is concerned with whether group
differences are statistically significant, so
single-case researchers or clinicians would wish to
determine whether the observed difference between
their patient and a normative or control sample was
statistically significant. More generally,
neuropsychologists have an interest in estimating
the abnormality or rarity of a patient’s
performance; that is, they wish to estimate the
proportion of the healthy population that would be
more extreme than their patient. The remainder of

this paper is concerned with developing statistical
methods to address these needs.

The range of potential solutions to these
problems is constrained by the fact that the control
or normative samples, against which an individual
is to be compared, will often be modest in size.
Among the reasons for this is the fact that
theoretical advances in neuropsychology continue
to occur at a rapid rate, whereas the collection of
large-scale normative data is a time consuming and
often arduous process (Crawford, 1996). Thus,
neuropsychologists may continue to have access
only to provisional normative data long after a new
measure has been developed; these norms may be
no more than control sample data from an
experimental study. Secondly, when performance
on a neuropsychological measure is best expressed
as a slope, a specific factor that may have
discouraged collection of norms is the lack of
explicit, practical guidance on how to analyse and
interpret an individual’s score when data are in this
form. It is hoped that the methods presented here
will help remove this obstacle.

The need to develop methods that are suitable
for use with small control or normative samples is
perhaps most apparent when one considers
single-case research. Within academic
neuropsychology there has been a resurgence of
interest in single-case studies and this has led to
significant advances in our understanding of
normal and pathological cognitive function
(Caramazza and McCloskey, 1988; Code et al.,
1996; Humphreys, 1999; McCarthy and
Warrington, 1990; Shallice, 1988; Ellis and Young,
1996). In many of these studies the theoretical
questions posed cannot be addressed using existing
instruments and therefore novel instruments are
designed specifically for the study (Shallice, 1979).
The sample size of the control or normative group
recruited for comparison purposes in such studies
is typically < 10 and often < 5. In passing, it may
be noted that the control group need not be healthy
participants; for example, one can envisage many
hypotheses that state that the slope of a particular
patient will be significantly lower than those
obtained from a sample of patients that have other
clinical features in common.

For the reasons outlined above it is clear that
statistical methods that treat the control sample
statistics (i.e., the mean and SD of the control
sample’s slopes) as parameters (i.e., treat the
normative sample as if it were a population rather
than a sample) would have limited applicability. In
this respect, the need for an appropriate method of
dealing with slopes, is directly analogous to the
simpler case where the researcher or clinician
wishes to compare a conventional test score for a
patient (e.g., number of items passed on a memory
test) with a control or normative sample.

The ‘standard’ procedure for statistical inference
in this latter situation is well known. When it is
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reasonable to assume that scores are normally
distributed, the patient’s score is converted to a z
score, based on the mean and standard deviation in
the normative sample, and evaluated using tables of
the area under the normal curve (Howell, 1997; Ley,
1972). Thus, if the researcher or clinician has formed
a directional hypothesis concerning the patient’s
score prior to testing (e.g., that the score will be
below the mean), then a z score which fell below
–1.64 would be considered statistically significant
(using the conventional 5% level). More generally,
the procedure provides the neuropsychologist
with information on the rarity or abnormality of
the individual’s score. This method treats the
normative sample statistics as if they were
parameters. When the N of the normative sample is
large this is not problematic. However, it is
problematic when, for example, the sample consists
of only 10 persons.

Drawing on work by Sokal and Rohlf (1995),
Crawford and Howell (1998) presented a method
of comparing an individual’s score with a
normative sample in which the sample statistics are
used as sample statistics rather than treated as
population parameters. The method is a modified
independent samples t-test in which the individual’s
score does not contribute to the estimate of the
within-group variance. The formula is 

(1)

where X1 = the individual’s score, X�2 = the mean
score of the normative sample, σ̂2 = the standard
deviation of the scores in the normative sample,
and N2 = the sample size. The degrees of freedom
for t are N2 + N1 – 2 which reduces to N2 – 1. This
method can be used to determine if an individual’s
score is significantly different from that of the
normative or control sample. More generally, it
provides an unbiased estimate of the abnormality
of the individual’s score; i.e., if the p value (one-
tailed) for t was calculated to be 0.03 then it can
be estimated that only 3% of the healthy
population would exhibit a score lower than that
observed for the individual.

Crawford et al. (1998) extended this approach to
cover circumstances where the neuropsychologist
wishes to compare the difference between a pair of
test scores (e.g., scores on verbal versus spatial
short-term memory tasks) observed for an
individual, with the distribution of differences
observed in a control or normative sample.
Crawford and Garthwaite (2002) also extended it to
permit comparison of the differences between an
individual’s scores on each of k tests and the
individual’s mean score on the k tests with the
differences between these quantities in a control or
normative sample.

Most recently, Crawford et al. (2003) have
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extended the methods to cover situations where
performance is quantified by parametric or non-
parametric correlation coefficients (e.g., when
assessing temporal order memory, an individual’s
performance is usually assessed by computing the
rank order correlation between the reported order
and the actual order in which stimuli were
presented).

In the present paper we further extend this
approach to cover circumstances where the
clinician or researcher wishes to compare the slope
of a regression line obtained from a patient with a
normative or control sample.

Before presenting these methods it should be
noted that an additional consideration in developing
them was that they should only require summary
statistics from the normative or control sample and
the patient, rather than the raw data. This was
motivated by three considerations. Firstly, the
summary statistics required are easily obtained
from any standard statistical package. Secondly,
working with the summary statistics is less time
consuming for the user. Thirdly, by requiring only
summary data, this should encourage the
development of norms for neuropsychological
measures for which performance is best expressed
as a slope. That is, publication of the summary
statistics from a normative or control sample would
be sufficient for independent researchers or
clinicians to use the norms with their own patients.

A potential alternative means of testing the
difference between the patient’s slope and the mean
slope in the controls would be simply to convert
the patient’s slope to z, based on the mean and SD
of the controls, and refer this z to a table of the
area under the normal curve. However, just as is
the case with comparing a patient’s performance on
a conventionally scored test with controls, this
method is inappropriate, as it treats the control
sample statistics as if they were population
parameters.

The practical effect of using this alternative
method would be to exaggerate the abnormality of
the patient’s performance and to spuriously inflate
the chance of finding statistically significant
effects. Furthermore, when the performance of
patient and controls is quantified using a slope
there is an additional consideration, because a
regression analysis yields not only a slope estimate,
but also the (estimated) variance of the slope
estimate. The appropriate test for comparing the
slopes of a patient and controls depends upon the
homogeneity of these variances for the controls,
and whether the patient’s slope estimate has a
similar variance.

Testing Equality of Slopes

We have N individuals in a normative or
control sample who each perform an identical set
of k trials or items on a given neuropsychological
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task. Let x denote the independent variable for the
jth trial or item and let y denote the ith individual’s
response for that trial or item. For example, in a
single case study aimed at determining whether the
relationship between object size and maximum grip
aperture has broken down in a patient, x would
represent object size and y maximum grip aperture.
If six trials were run for each of ten object sizes
then k would equal 60. We assume that the
responses for each individual follow a simple linear
regression,

yij = αi + βixj + εij, (2)

where εij is random error. We assume that errors for
the ith individual are normally distributed with
variance τ 2

i and that β1, β2, …, βN are values from a
normal distribution with mean b and variance σ2,
i.e., N (b, σ2). A further individual (the patient) also
performs the set of k tasks and his/her responses are
assumed to come from the linear regression

y(N + 1) j = αN + 1 + βN + 1xj + ε(N + 1) j, (3)

where the ε(N + 1) j are normally distributed with
variance τ 2

N + 1. We wish to test whether the slope
of the regression line obtained from the patient’s
data (βN + 1) is significantly different from those 
of the control or normative sample; i.e., we wish 
to test if βN + 1 is a value from the distribution 
N (b, σ 2). More generally, we are interested in
estimating the rarity or abnormality of the patient’s
slope.

Let ^βi denote the estimate of βi given by the
data for the ith individual and let φ2

i denote the
variance of (^βi – βi). Then

(4)

where x� = Σ xj /k. Also,

^βi ~ N (b, σ2 + φ2
i). (5)

The data consist of the values ^β1, …, ^βN + 1 and we
would like to treat these quantities as coming from
identical distributions. From (5), this will
effectively be the case if either
I) φ2

i is small relative to σ2 for i = 1, K, N + 1; or
II) the φ2

i are equal for i = 1, …, N + 1. 

Note that the value of is the same 

for all individuals so the φ2
i are equal if the τi are

equal.
Before we can move to compare these slopes,

we must examine whether it is reasonable to
believe that (I) or (II) hold. Testing is simplest if
(I) holds, so we suggest it is checked first. If it
holds then we proceed directly to a test (Test c) in
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which slopes are compared. If (I) holds for the
controls but not for the patient, then we formally
test whether the variance for the patient (σ2

N + 1)
differs from those for the controls (σ 2

1, …, σ 2
N).

This is Test b. If (I) does not hold for the controls,
then we first test if it is reasonable to assume σ2

i,
K, σ 2

N are equal (Test a) and, if it is, we again
move to Test b. If after performing Test b it is
reasonable to assume that the σ2

i are either small
relative to σ2 [so that (I) holds] or equal [so that
(II) holds], then we compare slopes using Test c;
while if Test b suggests the variance for the patient
differs from that of the controls, then we compare
slopes using a different test (Test d). The sequence
of tests and decision points are illustrated in the
flow diagram presented as Figure 1. The next
section presents the rationale for this sequence of
tests, their derivations, and the relevant
computational formulae. Some technical details of
the tests are given in Appendix 1. 

The sequence of tests and their computational
formula may appear complicated. However, it
should be noted that frequently scenario (I) will
apply and the procedure is very straightforward.
Furthermore, a computer program designed to
accompany this paper automates the process (see
later section). Thus, although it is important that
the basis of the methods are set out formally, in
practice the neuropsychologist need never carry out
the computations.

Sequence of Tests for Slopes

To examine (I) requires estimates of σ2
i (i = 1,

…, N + 1) and σ 2. The regression analysis that
determines the estimate ^βi from the data for the ith
person also gives a standard error of this estimate1,
which we will designate as si. This statistic is
routinely provided by statistics packages that
perform regression. An unbiased estimate of σ2

i is
si. To estimate σ2, we calculate

(6)

and

(7)

In words, we sum the slope estimates of each
individual in the control sample and divide by the
sample size to obtain their mean, and similarly we
square each of the standard errors to form
variances (s2

i) and calculate the average of these
variances. Then we put
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1It is crucial that this statistic is not confused with what, in psychological
statistics, is referred to as the standard error of estimate. The standard error
of estimate is a measure of variability of obervations about the regression
line and, in mainstream statistics would be referred to as the residual
standard deviation.



(8)

and an unbiased estimate of σ2 is

σ̂ 2 = u2 – –s2. (9)

In theory, the variance of ^βi about b [i.e. var 
( ^βi – b)] is at least as large as the variance of

^βi about βi. Sometimes estimates will not 
reflect this because of random variation, but
otherwise the estimate of σ2 given in (9) will be
non-negative. 

If the largest of the s2
i (among both the control

group and the patient) is much smaller than σ̂ 2, 
say s 2

i ≤ σ̂ 2/10 for i = 1, …, N + 1, then it is
reasonable to treat the variances of the ^βi as being
equal without further testing, and we move on to
Test c. If s 2

i ≤ σ̂ 2/10 for each of the controls but 
s 2

N + 1 > σ̂ 2/10 for the patient, then we go on to
Test b. Otherwise (i.e. when s2

i > σ̂ 2/10 for at least
one individual in the control group), we go on to
apply Test a. We also apply Test a if σ̂ 2 is
negative.

u
N

i

N

2
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2
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1
= =
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–

^β β
Test a (Testing for Equal Variances in the Control
Sample)

If s 2
i > σ̂ 2/10 for at least one individual in the

control group, then we cannot say that the φ2
i are

sufficiently small for their exact values to be
unimportant, and we must first test whether it is
reasonable to assume that their value is the same for
everyone in the normative or control sample. Thus
the null hypothesis for this test (Test a) is 
H0: φ2

1 = φ2
2 = … = φ2

N, and the alternative hypothesis
is that at least two of these variances differ. 

Various homogeneity of variance tests have been
proposed. Most were developed for the case where
estimates of variances are derived from simple
random samples, rather than from regression
models, and they often require kurtosis estimates or
the raw data, rather than only requiring estimated
variances. However, these restrictions do not apply
to the “standard” test for homogeneity of variances
first suggested by Bartlett (1937). For this test, put 

(10)

where, as noted, k is the number of trials or items.
The test statistic is

g N
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Fig. 1 – Flow diagram for the sequence of tests used to compare a patient’s slope with those of a normative or control sample (the
computer program that accompanies this paper fully automates this process).



(11)

This statistic has approximately a χ2 distribution
on N – 1 degrees of freedom. H0 is rejected for
large values of the test statistic and if it is rejected
at, say the 5% level of significance, then it is
unreasonable to treat the variances as being equal.
If H0 is not rejected we proceed to carry out Test
b. Otherwise, more computationally demanding
methods are required, such as Bayesian techniques
which make use of the BUGS software package
(Spiegelhalter et al., 1996). Alternatively, one can
consider expressing the patient and control data as
correlation coefficients, rather than slopes, and use
the methods recently developed for correlation
coefficients by Crawford et al. (2003).

Test b (Comparing the Variance of the Patient with
those of the Control Sample)

If it is reasonable to treat the variances of the
slope estimates (σ 2 + φ2

i ) as being equal for the
control or normative sample, the next stage is to
compare these variances with that of the patient.
There are a number of alternatives available to
make this comparison but the method selected here
is the standard F-test for comparing two variances.
The F-test has been criticised (Howell, 2002)
because it is sensitive to nonnormality of the data
(with non-normal data it yields inflated Type I
errors). However, there are two reasons for its use
in the present context. Firstly, the test can be
performed when only summary statistics rather
than raw data are available. This is in keeping with
our aims of producing a practical method for
testing hypotheses, and also it means that
researchers or clinicians can compare their results
for an individual with normative or control data
from a third party. Secondly, in the present context,
the test comparing the variances in the individual
and control sample is not the primary test of
interest (although it may have theoretical or clinical
implications in its own right, see below). Instead it
is used simply to select the most appropriate
procedure to employ for the critical test of whether
the index of association (i.e., the slope of the
regression line) is significantly different from the
control values.

Let φ2 denote the common value of φ2
1, …, φ2

n.
To perform the F-test we form the ratio between
the patient’s variance (s 2

N + 1) and the mean
variance of the control or normative sample (s� 2),
putting the larger of these two quantities in the
numerator. That is, we form the ratio s2

N + 1/s� 2, or
s� 2/s 2

N + 1. Under the null hypothesis (H0: φ2
N + 1 =

φ2), this ratio has an F-distribution on [k – 2, N (k
– 2)] degrees of freedom if s 2

N + 1 > s� 2, or an F-
distribution on [N (k – 2), k – 2] degrees of
freedom if s� 2 > s2

N + 1. Of course, if H0 is rejected
then we have evidence that the case differs from

( – ) – /k N s s gii

N
2 2 2

1
ln ln .

=∑{ } the controls. In some circumstances this in itself
would be a theoretically and/or clinically important
finding. (So we might choose to perform this test
even when s 2

1 ≤ σ̂ 2/10 for i = 1, …, N + 1). If 
s 2

N + 1 is significantly greater than s� 2 then the
patient’s individual responses are further from
her/his regression line (i.e., more erratic) than the
responses of the controls. 

Test c (Comparing Slopes whose Variances are the
same for Patient and Controls)

This test is performed if Test a was
unnecessary, or if Test b was performed and its
null hypothesis was not rejected. In either case, it
is reasonable to treat ^β1, …, ^βN, ^βN + 1 as a simple
random sample from a normal distribution. Thus,
to test the hypothesis H0: βN + 1: ~ N (b, σ2) (i.e.,
to test whether the slope for the patient differs
from those of the control or normative sample), we
use the result given by Crawford and Howell
(1998) for sampling from a normal distribution.
The mean (β�) and standard deviation (u) of the
slopes for the control sample have been calculated
using equations (6) and (8). If the patient’s
regression coefficient (^βN + 1) is not significantly
different from the control sample regression
coefficients (^β1, …, ^βN) then 

(12)

has a t distribution on N – 1 degrees of freedom.
It can readily be appreciated that formula (12)

is directly equivalent to formula (1), which was
employed by Crawford and Howell (1998). In (1)
the difference between a patient’s score on a
neuropsychological test (e.g., number of items
passed) and the mean score of the control or
normative sample is divided by the standard error
of the difference. In the present case, where
performance on the neuropsychological task is
represented not by a conventional score but by a
slope, the difference between the patient’s slope
and the mean of the slopes in the control sample is
divided by the standard error of that difference. 

Test d (Assuming Equal Error Variances for the
Control Sample but not for the Patient)

The hypothesis to be tested is that the slope for
the patient (βN + 1) is not significantly different from
the slopes for the control sample (β1, …, βN). Two
situations must be considered, those where u2 > s� 2

and those where u2 ≤ s� 2. In theory, the variance of
^βi about b [i.e. var ( ^βi – b)] is at least as large as the
variance of ^βi about βi. Sometimes estimates will
not reflect this because of random variation, but
otherwise u2 > s� 2. When this holds then the
following test statistic is appropriate (Test d.1)

β β^ –N

u N
N

+

+
1
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(13)

Using Satterthwaite’s approximation
(Satterthwaite, 1946) this statistic (which we
designate as t’) has approximately a t-distribution
with ma degrees of freedom, where 

(14)

If the case where u2 ≤ s� 2 arises, then the
Welch-Aspin test (Aspin, 1949) is appropriate. We
designate this as Test d.2. The test statistic is

(15)

This statistic has approximately a t-distribution
with mb degrees of freedom, where 

(16)

Obtaining a Point Estimate of the Abnormality 
of a Patient’s Slope

The above method is designed to test whether a
patient’s slope is significantly different from
controls. However, it would also be desirable to
obtain a point estimate of the percentage of the
population that will perform more poorly than the
patient (i.e., it would be informative to have an
estimate of the abnormality or rarity of the slope
observed for the patient). When Test c is applied
the p value obtained not only tells us if the
patient’s slope is significantly different from
controls but it also simultaneously provides an
unbiased estimate of this percentage. That is, if the
one-tailed p value for t obtained from Test c is
0.023 then this is an estimate of the proportion of
the population that would obtain a slope lower than
that obtained by the patient.

However, when Test d.1 or d.2 have to be
applied then the p value for the significance test is
not an estimate of the percentage of the population
that would perform more poorly. These significance
tests factor in the difference between the error
variances of the patient and controls but this
difference is not relevant when estimating the
percentage (it is only the distribution of slopes in
the controls that is relevant when estimating this
quantity). Fortunately, even when Test d.1 or d.2
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have been used to test for significance, applying
Test c yields a consistent estimate of the
percentage of the population that would obtain a
slope lower than that observed for the patient (see
second worked example).

Obtaining Confidence Limits on the Abnormality 
of a Slope

In addition to having a point estimate of the
percentage of the population that would perform
more poorly than the patient, it would also be
useful to generate confidence limits on this
percentage. This is in keeping with the
contemporary emphasis in statistics, psychometrics,
and biometrics on the use of confidence limits
(American Psychological Association, 2001; Daly
et al., 1995; Gardner and Altman, 1989; Zar, 1996).
Gardner and Altman (1989) for example, in
discussing the general issue of the error associated
with sample estimates note that, “these quantities
will be imprecise estimates of the values in the
overall population, but fortunately the imprecision
itself can be estimated and incorporated into the
findings” (p. 3).

To generate confidence limits on the
abnormality of the slope we use a method given by
Crawford and Garthwaite (2002). The method may
be applied when it is reasonable to assume that the
slope estimates for the controls are identically
distributed from a normal distribution. That is, if s2

i
is much less than σ̂ 2 (say s2

i ≤ σ̂ 2/10 for i = 1, …,
N, or if the null hypothesis of Test a is not
rejected. Hence, the method may be used with
Tests c, d.1 and d.2. No assumptions are needed
about the distribution of the slope estimate of the
patient (^βN + 1) as only the observed value of ^βN + 1
effects the confidence interval.

Let P denote the percentage of the population
that will fall below a given individual’s estimated
slope (^βN + 1), we suppose we require a 100(1-α)%
confidence interval for P. If we put

(17)

where β� is the mean slope in the controls (equation
(7)) and u is the standard deviation of the slopes in
the controls (i.e., the square root of the variance
given by equation (9)), then c is an observation
from a non-central t-distribution on N – 1 degrees
of freedom. Non-central t-distributions have a non-
centrality parameter that affects their shape and
skewness. We find a value of this parameter, δU,
such that the resulting non-central t-distribution has

as its 100 α/2 percentile. Then we find the 
value δL such that the resulting distribution has 

as its 100(1 – α/2) percentile. From tables
for a standard normal distribution we obtain

and . ThesePr ( / )Z NU< δPr ( / )Z NL< δ

c N

c N

c
u

N= +β β^ –
,1
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probabilities depend upon α, c and N and we denote
them by h (α/2; c; N) and h (1 – α/2; c; N),
respectively. Then a 100(1 – α)% confidence
interval for P may be written as 

[h (α/2; c; N), h (1 – α/2; c; N)] (18)

Details of the derivation of h are given in
Crawford and Garthwaite (2002) and a worked
example of obtaining 95% confidence limits on the
rarity of a slope is provided in a later section.

A Worked Example

To illustrate the methods we begin with the
example of an amnesic patient’s performance on
time estimation. Suppose a patient was
administered a computerised time estimation task
resembling that described by Venneri et al. (1998).
Briefly, in one particular version of this task
participants are presented with 8 trials of each of
14 time intervals in a randomised order (the
intervals ranged from 15 to 54 seconds). Suppose
that 13 healthy participants were recruited to serve
as a control sample. In Venneri et al.’s. (1998)
group study comparing amnesic and healthy
samples the performance of each individual was
quantified by regressing their actual elapsed times
on their estimates of elapsed times; suppose the
slope ( ^βN + 1) obtained for our patient was 0.60 and
its standard error (sN + 1) was 0.0143. The slopes
and accompanying standard errors for each of the
controls are presented in Table I (the data are
artificial).

The first step is to calculate s� 2, u2 and σ̂ 2.
From Table I, s� 2 = (.00012 + … + .00050)/13 =
0.0003162, and u2 (the sample variance of ^βi
values) = 0.009176. Hence from equation (9), 

σ̂ 2 = .009176 – .0003162 = 0.00886.

It can be seen from Table I that s2
i is less than

σ̂ 2/10 = 0.0008886 for each control, and the
patient’s error variance (s 2

N + 1 = 0.0002) is also
less than this quantity. Therefore, in this example,

we can, as will frequently be the case, proceed
directly to testing for a difference between the
slope of the patient and those of the controls using
Test c. The mean slope in the controls was 0.8363
with a SD of 0.0958. Entering these figures into
formula (12) we obtain the following,

As the hypothesis tested by the researcher or
clinician in this example is directional, i.e., that the
patient’s performance on time estimation will be
significantly lower than matched controls, a one-
tailed test is applicable. The one-tailed critical
value for t at the 5% level on 12 degrees of
freedom is 1.78. The individual’s slope is,
therefore, significantly different from the controls
at the 5% level. The exact one-tailed probability
for t in this example is 0.0175 and so the
expectation is that only 1.75% of individuals in the
population from which the normative sample was
drawn would obtain a score as low as that
observed for the patient.

To obtain 95% confidence limits on this
percentage we proceed as follows:

We want a non-central t-distribution on N – 1 =
12 degrees of freedom that has – 8.895 as its 0.975
quantile. This determines the non-centrality
parameter to be – 12.875 so we put δL = – 12.875.
We also want a non-central t-distribution on 12 df
that has – 8.895 as its 0.025 quantile. This gives δU
= – 4.830. Then, 
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TABLE I

Estimated Slopes of the Regression Lines (β̂i) and their Standard Errors (Si) for 10 Control Participants on a Time Estimation Task 
(the data are artificial)

Control case β̂i Si S2
i

Control 1 0.884 0.0109 .00012
Control 2 0.866 0.0140 .00020
Control 3 0.924 0.0154 .00023
Control 4 0.966 0.0120 .00014
Control 5 0.804 0.0126 .00016
Control 6 0.724 0.0231 .00054
Control 7 0.914 0.0257 .00066
Control 8 0.687 0.0134 .00018
Control 9 0.820 0.0191 .00037
Control 10 0.821 0.0174 .00030
Control 11 0.979 0.0234 .00055
Control 12 0.713 0.0126 .00016
Control 13 0.770 0.0223 .00050



and 

Hence the 95% lower confidence limit for P is
0.02% and the upper limit is 9.02%. To summarise
the results for this case: the patient’s time
estimation was significantly poorer (p < 0.05) than
controls and it is estimated that only 1.75% of the
population would exhibit a score poorer than that
observed; the 95% confidence interval on this
percentage is from 0.02% to 9.02%.

An Alternative to the Present Method

As noted in a previous section, a potential
alternative means of testing the difference between
the slopes of the patient and controls would be
simply to convert the patient’s slope to z and refer
this to a table of the areas under the normal curve.
It is informative to compare this alternative with
the proposed method for the present worked
example. The patient’s slope expressed as a z score
from a normal distribution with a mean of 0.8363
and an SD of 0.0958 is – 2.47. Referring this z
to a table of the normal curve reveals that 
the estimated percentage of the population 
that would obtain a slope lower than this is 0.68%.
This exaggeration of the abnormality of the
patient’s performance would be even more
pronounced with smaller control samples.
Furthermore, in the present example, the
conclusion from application of both the t-test and 
z is that the patient is significantly impaired 
(p < 0.05). However, obviously these methods 
need not be in agreement. For example, if the
patient’s slope had been 0.676, then z (– 1.67)
would be significant (p < .05) but this is a spurious
result arising from treating the sample as a
population; the t-test would not be significant 
(t = – 1.612, p > .05).

Furthermore, in the present example it was not
necessary to be concerned about differences
between the error variances of controls and 
the patient. However, in other cases (such as 
the worked examples that follow) where the 
error variances are too large to be ignored 
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and differ between controls and the patient, 
tests that are more conservative than test c
(i.e. tests d.1 and d.2) need to be applied. 
When this is the case, the use of z as an
alternative would lead to even greater inflation 
of the Type I error rate: not only would the
statistics of the controls be treated as parameters
but the difference in error variances would be
ignored.

Further Worked Examples

In the foregoing example it was possible to
move directly to a test on the difference between
slopes using Test c. In the next example we have
intentionally chosen data values such that the
criteria for applying Test c is not fulfilled. The
example uses artificial data based on the study by
Carey et al., 1998 referred to earlier. One of the
issues examined in this study was whether there
was a deficit in the visual estimation of distance in
a patient (DF) with a posterior cortical lesion. The
distance estimation task required participants to
estimate distances ranging between 16 and 40cm;
there were ten trials for each of the five distances
(therefore k in this example = 50) under monocular
conditions (participants were also tested under
binocular conditions but this will be ignored at this
point). The accuracy of distance estimation was
quantified using the slope relating estimated and
actual distance.

Taking this study as the basis for our example,
suppose that the distance estimation task had been
administered to a patient and eight controls and
that, for each participant, estimated distance was
regressed against actual distance to obtain their
individual slopes and standard errors of the slopes.
Let us suppose that the patient’s slope was 0.60
and that the standard error of this slope was
0.1043; the equivalent data for the controls are
presented in Table II.

As in the first example, we first calculate s� 2, u2

and σ̂ 2. From the data in Table II, s� 2 = .0017243,
and u2 = 0.003358. Hence from equation (9), σ̂ 2 =
0.001634. As s2

i is not less than σ̂ 2/10 = 0.0001634
for each control (in fact, Table II shows that s 2

i
approximately equals σ̂ 2 for most controls), it is
clear that the φ2

i are not small relative to σ2. Hence
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TABLE II

Estimated Slopes of the Regression Lines (β̂i) and their Standard Errors (Si) for 8 Control Participants on a Distance Estimation Task 
(the data are artificial)

Control case β̂i Si S2
i ln (S2

i)

Control 1 0.978 0.04271 0.001824 – 6.307
Control 2 0.928 0.04191 0.001756 – 6.345
Control 3 0.950 0.03943 0.001555 – 6.466
Control 4 0.985 0.03882 0.001507 – 6.498
Control 5 0.835 0.04818 0.002321 – 6.066
Control 6 0.940 0.04113 0.001692 – 6.382
Control 7 0.992 0.03035 0.000921 – 6.990
Control 8 0.860 0.04709 0.002218 – 6.111



we must apply Test a to determine whether there
are significant differences among the error
variances of the controls. We calculate g from
formula (10) 

Formula (11) requires us to take the log of s� 2

(the mean of the control’s error variances), s� 2 =
0.001724 and ln (0.001724) = – 6.3631. We also
require the sum of the logs of the control’s error
variances, the logs of these individual error
variances are presented in Table III and their sum
is – 51.165. Entering these quantities into formula
(11), 

χ2 = (50 – 2) [(8 × 6.3631) – (– 51.165)]/1.0078 =
= (48) [– 50.905 + 51.165]/1.0078 = 
= (48) [0.260]/1.0078 = 12.383.

As the result does not exceed the critical 
value for χ2 on 7 degrees of freedom (14.07), we
treat the error variances among the controls as
equal. 

As the differences among the controls were not
significant, we proceed to test whether the error
variance of the patient is significantly different
from those of the controls. That is, we perform an
F test (Test b). Because, as noted, the calculations
are straightforward when the error variance of the
patient does not differ from controls (i.e., Test c is
applied), we have chosen values for the error
variances such that the F test is significant. This
allows us to demonstrate the full sequence of tests
and provide a worked example of the more
complex formulae (of course, with actual data, the
error variances may not differ). In this example,
the standard error of the patient’s slope estimate 
(sn + 1) = 0.1043 and thus s2

n + 1 = 0.01088. As this 
is larger than the mean of the controls’ variances
(s� 2 = 0.001724), it forms the numerator of the ratio
for the F-Test; i.e., s2

n + 1/ s� 2 = 0.01088/0.001724 =
6.311. This ratio exceeds the critical value of 1.39
for F on [k – 2, N (k – 2)] = [48, 384] degrees of
freedom. 

As the patient’s error variance differs
significantly from the controls, we next compare u2

(= 0.003357) with s� 2 (= 0.001724). As u2 > s� 2 we
perform Test d.1. Substituting in equation (13)

g = + +
×

= + =1 8 1
3 8 50 2

1 9
1152

1 0078
( – )

. .

gives

The degrees of freedom for t’ are calculated
using formula (14) (note that the value in the
numerator has already been calculated above), 

The one-tailed critical value for t’ at the 5%
level on 37 degrees of freedom is 1.687. The
individual’s slope is, therefore, significantly
different from the controls at the 5% level (the
precise p is 0.0028). As noted, when tests d.1 or
d.2 are used to test whether the patient’s slope is
significantly different from controls, we also need
to run test c if we want to obtain an estimate of the
percentage of the population that would obtain a
lower slope than the patient (i.e., if we want to
estimate the abnormality of the slope). Therefore,
applying formula (12),

The one-tailed p value for a t of 5.439 on N – 1 =
7 df is 0.00048. Multiplying this figure by 100 gives
us the estimated percentage of the population that
would obtain a score lower than the patient (rounded
= 0.05%). To obtain confidence limits on the
percentage we would proceed exactly as in the first
worked example; i.e., we would use formula (18).
The 95% CI on the percentage that this leads to is
from the vanishingly small (0.00000005%) to 0.31%.

To summarise the results for this case; the
patient’s slope is significantly lower (p < .01) than
controls. Furthermore, the slope is highly
abnormal; it is estimated that only 0.05% of the
population would obtain a lower score (upper 95%
confidence limit = 0.31%).

The final example uses data obtained from a
patient with Parkinson’s disease and six age-
matched controls on a task requiring participants to
date past public events. The raw data were
provided by Annalena Venneri (University of Hull).
The dating task consisted of 25 events that
occurred between 1966 and 1990 (Venneri et al.,
1997). Performance for the patient and each of the
controls was quantified by regressing the reported
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TABLE III

Estimated Slopes of the Regression Lines (β̂i) and their Standard
Errors (Si) for 6 Control Participants on an Event Dating Task

Control case β̂i Si

Control 1 0.492 0.106
Control 2 0.559 0.108
Control 3 0.630 0.116
Control 4 0.627 0.065
Control 5 0.674 0.105
Control 6 0.538 0.107



years of occurrence on the actual years the events
occurred. The slopes and accompanying standard
errors for the controls are presented in Table III;
the patient’s slope was 0.247 with a standard error
of 0.069. To avoid repetition we do not fully work
this example (the data in Table III are sufficient for
readers to verify the results by hand calculation or
by using the accompanying computer program).

As in the previous example, s2
i is not less than

σ̂ 2/10 for each control and therefore we must apply
Test a to test for differences among the controls’
error variances. This yields a value of 8.13 which
does not exceed the critical value for χ2 on 5
degrees of freedom (11.07), and we therefore treat
the error variances among the controls as equal.
We next apply test b. This yielded a significant
result [F (138, 23) = 2.21, p = 0.0148] and
therefore the patient’s error variance differed from
the error variances of controls. In contrast to the
previous example, in the present example u2 < s� 2

(u2 = 0.004645, s� 2 = 0.010509) and therefore we
perform test d.2 (i.e., the Welch-Aspin test) rather
than d.1 to compare the patient’s slope with those
of the controls,

The degrees of freedom for t’ from formula
(16) are � 42 and the one-tailed probability is
0.00066. Therefore the patient’s performance on
this task was significantly poorer than controls. As
in the previous example we must also apply test c
to obtain an estimate of the abnormality of the
patient’s slope (because of the difference between
the error variances); the patient’s slope is highly
unusual, it is estimated that only 0.288% of the
control population would obtain a lower slope
(95% CI = 0.00000005% to 2.84%).

Detecting Dissociations when Performance on one
or both of the Tasks is Expressed as a Slope

Up to this point we have been concerned with
methods of testing for a significant deficit on a
single task. Although the ability to identify a
deficit in the individual case is fundamental, the
presence of a deficit in a given cognitive function
often only acquires theoretical importance when it
is accompanied by the absence of a deficit in other
related functions. That is, a central aim in many
neuropsychological case studies is to fractionate the
cognitive system into its constituent parts. This aim
is pursued by attempting to establish the presence
of dissociations of function.

Typically, if a patient obtains a score in the
impaired range on a test of a particular function
and is within the normal range on a test of another
function, this is regarded as evidence of a
dissociation. However, this evidence in isolation
may not be at all convincing (Crawford and
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Garthwaite, 2002). For example, a patient’s score
on the “impaired” task could lie just below the
cut-point for defining impairment and the
performance on the other test lie just above it.
Therefore, a more stringent test for the presence of
a (classical) dissociation would also involve a
comparison of the difference between tests
observed for the patient with the distribution of
differences between these same tests in the control
sample (Crawford et al., 2003). 

Crawford et al. (1998) devised a method that
can be used to test whether the difference between
an individual’s score on two tasks is significantly
different from the differences observed in a control
sample. This method can, therefore, provide the
additional test for the presence of a dissociation. It
can also be employed when a patient’s scores are
within the impaired range on both tasks; i.e. when
testing for what Shallice (1988) refers to as a
“strong dissociation” (Crawford et al., 2003).

The method was primarily developed for use
with tasks in which performance is quantified by
conventional means (e.g., number of items correct).
For example, Crawford et al. (1998) use the
example of testing whether the difference between
a patient’s performance on a verbal short-term
memory task and a spatial short-term memory was
significantly larger than the differences in a control
sample. However, their method can be just as
applicable when performance on one or both of the
tasks is expressed as the slope of a regression line
with one proviso. In order to apply the test the
individuals’ error variance(s) must either be small
relative to the between-subject variance of the
slopes, i.e. (I) holds, or, failing that, the error
variance(s) of the patient must not differ
significantly from those of controls, i.e. (II) holds.
In other words, one of the criteria for application
of Test c must have been fulfilled.

The formula for this test for a dissociation,
which is essentially a modified paired samples t-
test, is 

(19)

where ZX and ZY are the scores of an individual on
Test X and Test Y expressed as z scores formed
using the means and SDs of the normative sample,
rxy is the correlation between Tests X and Y in the
normative sample and N2 is the number of
participants in the control sample. The test statistic
follows a t-distribution on N2 – 1 degrees of
freedom. Multiplying the one-tailed probability of t
by 100 gives the point estimate of the abnormality
of the individual’s score. A derivation for the
formula can be found in Appendix 1 of Crawford
et al. (1998).

The use of this method is best illustrated with an
example. Let us suppose that the amnesic patient and
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control cases whose time estimation performance
was used in the first worked example had also been
administered a test of abstract reasoning. 

Suppose that the mean score for the controls on
the abstract reasoning task (which was scored as
number of items passed) was 34.0 with a SD of 8.
Suppose also that the patient’s score on the
reasoning task was 30. As recorded earlier, the
patient’s slope on the time estimation task was
0.60. Also as reported earlier, the mean and SD of
the slopes in the control sample was 0.8363 with a
SD of 0.0958. The only remaining statistic required
to test for a dissociation between time estimation
and abstract reasoning is the correlation between
performance on the two tasks in the control sample;
let us suppose this (Pearson) correlation was 0.64.

Using the means and SDs of the controls, the
patient’s score on the time estimation task
expressed as a z score is – 2.467 and the z score
for abstract reasoning is – 0.50. We will designate
the abstract reasoning task as Test X and the time
estimation task as Test Y (the choice is arbitrary).
Entering these data into formula (19) we obtain

The two-tailed probability for a t of 2.234 on
12 degrees of freedom is 0.0454. We would
conclude, therefore, that the patient’s performance
on the time estimation task differs significantly
from his performance on abstract reasoning, the
latter being the better; i.e., there is evidence of a
dissociation between time estimation and abstract
reasoning. By multiplying the one-tailed p value
(0.027) by 100 we also have an estimate of the
percentage of the healthy population that would
exhibit a discrepancy in favour of abstract
reasoning larger than that observed for the patient
(2.27%); i.e., discrepancies of this magnitude and
direction are fairly rare. A confidence interval on
this percentage can be obtained using a method
devised by Crawford and Garthwaite (2002). In the
interests of brevity we do not provide a worked
example here but the 95% confidence interval for
this example is from 0.04% to 10.7%.

The foregoing example involved comparing the
difference between a patient’s performance on two
tasks with the differences in controls when
performance on only one of the tasks was
expressed as a slope. However, as noted, Crawford
et al.’s. (1998) method is just applicable when
performance on both tasks is expressed as a slope.
This would be useful when there is a need to
examine performance under different experimental
conditions (i.e. comparison of a patient’s slope
obtained under condition A versus the slope
obtained under condition B).
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An obvious specific example is provided by DF,
the case that formed the basis for our second
worked example. Milner et al. (1991) hypothesised
that cases such as DF should be markedly more
impaired when distance is estimated using
monocular versus binocular vision. Crawford et
al.’s method could be used to test this in a patient
by comparing the difference between the slopes
under monocular versus binocular conditions
against the differences between the slopes observed
in controls. The indications are that, in the case of
DF, application of such a test would reveal a
significant difference. Carey et al. (1998) found
that the slope relating actual and estimated distance
for DF was markedly higher under binocular
conditions, whereas the slopes of two controls were
similar under monocular and binocular conditions.

As it happens, in the earlier worked example
based on DF, the error variances were not small
relative to the variance of the slopes and the
patient’s error variance was significantly different
from controls (i.e., Test c could not be applied).
Therefore, this would provide an example where it
would not be possible to test for a dissociation.
However, as noted, these were artificial data chosen
intentionally to have these features (so that the full
sequence of tests could be illustrated). In practice it
will be common for the conditions to be met.

Caveats on the Use of the Foregoing Methods 

The tests developed in the present paper are all
modified t-tests. One of the assumptions underlying
any form of t-test is that the data are normally
distributed. Monte Carlo simulations have revealed
that t-tests are surprisingly robust in the face of
moderate violation of this assumption (Boneau,
1960). However, especially given the small Ns with
which we were concerned, these procedures are
best avoided when it is known or suspected that
the control or normative data are markedly skewed
or platykurtic/leptokurtic.

It should be noted that the possible alternative
method discussed in a previous section (i.e.,
treating the sample as a population and using z to
evaluate a patient’s performance) makes the same
assumption of normality and is equally
compromised by nonnormality. When the control or
normative samples are small, the neuropsychologist
should also be particularly alert to the presence of
outliers. For example, in elderly control or
normative samples it is not uncommon to observe
occasional cases who perform very poorly despite
the absence of any other evidence that suggests the
presence of a brain pathology (e.g., early stage
dementia).

When testing for differences between slopes, a
crucial assumption is that relationships between the
X and Y variables are linear. A visual check of this
assumption can easily be made by plotting separate
graphs of Y against X for each individual. If non-
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linearity is apparent, the neatest solution, if it
works, is to transform the Y and/or X variables.
Transforming the Y-variable is more common,
often by taking its logarithm, square-root or
reciprocal, although transforming the X-variable
can also be beneficial. Transformation of variables
is discussed in most practical textbooks of
regression (Weisberg, 1985).

A further assumption underlying the tests is that
errors in Y are homoscedastic, that is, their
variance does not vary with X. The most common
way of examining this assumption is to plot
residual errors against predicted values of Y. The
plots should show no pattern if the assumptions of
linearity and homoscedasticity are satisfied.
Transformations are also the most common way of
trying to cure homoscedasticity. If the relationship
between Y and X is linear but errors are
homoscedastic, then linearity can be preserved by
applying the same transformation to both Y – α̂ and
X, where α̂ is the constant term in the regression. If
a transformation is applied it is of course essential
that it is applied to all cases (i.e., to the data of all
control cases and the patient).

Finally, it will be appreciated that the statistical
power of any method of statistical inference will
decline as sample size decreases. Thus with the
small Ns with which we are concerned it is
inevitable that power will be low. The most
obvious way of increasing power is to increase the
size of the control or normative sample against
which the individual’s score is to be compared.
Power can also be increased by adopting a more
liberal significance level e.g. 15% rather than 5%,
but although this more liberal strategy will increase
Type I errors (false positives), it will decrease Type
II errors (false negatives). The decision to depart
from the conventional 5% level should be based on
the relative risks the researcher or clinician attaches
to the occurrence of these two types of errors. The
reasons for departing from the 5% level must be
strong, as the 5% level has proved a good choice
in general.

Computer program for Evaluating Slopes 
in the Single Case

The calculations involved in comparing slopes
can be tedious and are liable to be error prone.
Therefore we have written a computer program
(SINGSLOPE.EXE) for PCs to accompany this
paper2. The output from this program can be viewed
on the screen, printed, or saved to a file. The
program performs the sequence of tests outlined in
Figure 1. It prompts for the number of individuals
making up the control or normative sample (N), the
number of trials or items administered (k), and the

slope and its standard error for the patient and each
of the control cases. Standard errors are requested
rather than error variances because the former are
standard output from all statistical packages that
perform regression; for example, the slope (b) and
the standard error of b appear side by side in SPSS
output). As previously noted, it is crucial that this
latter statistic is not confused with what is
commonly termed the standard error of estimate
(which measures the variability of observations
about the regression line).

The program informs the user of the results of
the pre-tests (e.g., test a and b if it was necessary to
apply them) and then lists the mean, standard
deviation and standard error of the slopes in the
control or normative sample; the t value obtained
from the appropriate test (e.g., Test c, d.1 or d.2),
and its associated one- and two–tailed probability. It
also provides the point estimate of the abnormality
of the slope and the 95% CI for this percentage.

If a researcher wishes to test for a dissociation
between two tasks when performance on one or
both of the tasks is expressed as a slope then a
program previously provided by Crawford and
Garthwaite (2002) can be used; this program
implements the method developed by Crawford et
al. (1998). However, as noted, this method and the
accompanying program, was originally designed
for use with conventionally scored tests. Therefore,
if it is used to test for a dissociation involving a
slope it is necessary that the individuals’ error
variances are either small relative to the between-
subject variance of the slopes or that the patient’s
error variance is not significantly different from
controls. The easiest way to establish whether this
is the case is to run SINGSLOPE.EXE as it records
whether either of these criteria are met. In most
circumstances a researcher would want to run this
program first in any case; i.e., they would want to
test whether a patients slope was significantly
different from controls before subsequently seeking
evidence for a dissociation.

CONCLUSION

The single case approach in neuropsychology
has made a significant contribution to our
understanding of the architecture of human
cognition (Caramazza and McCloskey, 1988; Code
et al., 1996; Humphreys, 1999; McCarthy and
Warrington, 1990; Shallice, 1988; Ellis and Young,
1996). However, as Caramazza (1988) notes, if
advances in theory are to be sustainable they “…
must be based on unimpeachable methodological
foundations” (p. 619). The statistical analysis of
single case data is an aspect of methodology that
has been relatively neglected. This is to be
regretted. Other methodological (and logical)
considerations may have compelled many
researchers to abandon group-based research, but it
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is clear that the statistical problems associated with
drawing inferences from single cases significantly
exceed those of the former approach.

Very useful and elegant methods have been
devised for drawing inferences concerning an
individual patient’s performance on fully
standardized neuropsychological tests; i.e., on tests
that have been normed on a large representative
sample of the population (Capitani, 1997; Willmes,
1985). However, in cognitive neuropsychology,
new tests are constantly being devised to measure
new theoretical constructs. Understandably, these
tests are not fully standardized when employed
with single cases; instead they are administered to
a control sample that, typically, has a very modest
N. Therefore, methods that treat the control sample
statistics in such studies as population parameters
are not appropriate.

Although there remains much to do, we believe
that the methods presented here make a useful
contribution to the process of developing valid,
optimal, and practical statistical methods for single
case research. To our knowledge the specific
problems addressed in the present paper are not
covered in any existing textbooks or papers in
neuropsychology or psychological statistics.
However, it is clear from the examples provided
(which are by no means exhaustive) that the use of
slopes to quantify performance has a wide range of
applications in neuropsychological research and
practice. Finally, we hope that these methods will
encourage the development of normative data for
tasks in which performance is best expressed as a
slope.
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APPENDIX 1

Notes on Tests

Test a:

The standard errors of the slopes are s 2
1, …, 

s 2
N + 1. Formulae (10) and (11) are derived from

Glaser (1983) when each s 2
i follows a χ2

distribution on k – 2 degrees of freedom.

Test b:

From equation (5), for each i
^βi ~ N (b, σ2 + φ2

i ).

Test b assumes the variances σ 2 + φ2
i can be

treated as equal for i = 1, …, N + 1, and u2 is the
estimate of their common value. 

Test d.1:

The estimated variance of ^βN + 1 – β� is σ̂ 2 + 

s2
N + 1 + (σ̂ 2 + s� 2)/N, as the estimated variances of 

^βN + 1 and β� are σ̂ 2 + s 2
N + 1 and (σ̂ 2 + s� 2)/N,

respectively. From equation (9),

which yields the denominator in equation (13). This
denominator has been expressed in terms of u2, s� 2

and s2
N + 1 because these quantities are independently

distributed: s 2
N + 1 is clearly independent of u 2 and

s� 2; u 2 and s� 2 are independent because u 2 is
calculated from ^βi, …, ^βN while s� 2 is calculated
from s2

1, …, s2
N.

Test d.2

Assuming σ2 = 0, we have that ^βi ~ N (b, ϒ2) for
i = 1, …, n. Hence the estimated variances of ^βN + 1
and β� are s 2

N + 1 and s 2/n, which have k – 2 and 
n (k – 2) degrees of freedom respectively.

σ σ^
^( ) –2

1
2

2 2
2 2

1
21+ + + = +



 ++ +s s

N
u N

N
s sN N
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