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Testing for the presence of a deficit by comparing a case to controls is a fundamental feature of many
neuropsychological single-case studies. Monte Carlo simulation was employed to study the statistical
power of two competing approaches to this task. The power to detect a large deficit was low to mod-
erate for a method proposed by Crawford and Howell (1998; ranging from 44% to 63%) but was extre-
mely low for a method proposed by Mycroft, Mitchell, and Kay (2002; ranging from 1% to 13%). The
effects of departures from normality were examined, as was the effect of varying degrees of measure-
ment error in the scores of controls and the single case. Measurement error produced a moderate
reduction in power when present in both controls and the case; the effect of differentially greater
measurement error for the single case depended on the initial level of power. When Mycroft
et al.’s method was used to test for the presence of a classical dissociation, it produced very high
Type I error rates (ranging from 20.7% to 49.3%); in contrast, the rates for criteria proposed by
Crawford and Garthwaite (2005b) were low (ranging from 1.3% to 6.7%). The broader implications
of these results for single-case research are discussed.

INTRODUCTION

In neuropsychological single-case research infer-
ences concerning a patient’s cognitive status are
often based on comparing the patient’s test
scores to those of a control sample. In the
present study the performance of two inferential
methods of testing for acquired deficits is evalu-
ated: a modified t test proposed by Crawford and
Howell (1998; see also Crawford & Garthwaite,

2002) and a modified analysis of variance
(ANOVA) proposed by Mycroft, Mitchell, and
Kay (2002).

Crawford and Howell’s (1998) method has
been widely used to test for acquired deficits in
single-case research (e.g., see Bird, Castelli,
Malik, Frith, & Husain, 2004; Howard &
Nickels, 2005; Papps, Calder, Young, &
O’Carroll, 2003; Robinson, Shallice, & Cipolotti,
2005; Rosenbaum, Fuqiang, Richards, Black, &
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Moscovitch, 2005; Rusconi, Priftis, Rusconi, &
Umiltà, 2006; Schindler et al., 2004). Mycroft
et al.’s (2002) method was developed more recently
but it too has been used in a number of single-case
studies for the same purpose (see Bobes et al.,
2004; Farrer, Franck, Paillard, & Jeannerod,
2003; Forti & Humphreys, 2004; Miller &
Swick, 2003). There are fundamental differences
in the rationale behind these two methods, and
they can produce radically different results when
applied to the same data set. This raises the alarm-
ing possibility that results obtained in single-cases
studies (and their apparent implications for theory)
could be more a reflection of the inferential
method employed than genuine characteristics of
the constructs under investigation.

Crawford and Howell’s (1998) proposed
method of testing for a deficit in single-case
studies is based on a procedure described by
Sokal and Rohlf (1995) and takes the form of a
modified t test. The formula for this test is

t ¼
x� � �x

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ=n

p , (1)

where x� is the patient’s score, �x and s are the mean
and standard deviation of scores in the control
sample, and n is the size of the control sample. If
the t value obtained from this test exceeds the
one-tailed 5% critical value for t on (n 2 1) df
then it can be concluded that the patient’s score
is sufficiently low to reject the null hypothesis
that it is an observation from the scores of the
control population, and the patient is considered
to exhibit an impairment on the task in question.
A one-tailed test is employed because the hypoth-
esis tested (that the patient has a deficit) is
directional.

The p value obtained from this test also pro-
vides a point estimate of the abnormality of the
patient’s score. (In previous work on this topic
we have simply stated this without proof; in the
present paper we provide a brief mathematical
proof in Appendix A.) For example, if the one-
tailed p is .013 then we know that the patient’s
score is sufficiently low to render it unlikely (p ,

.05) that it has come from the control population
and that only (p � 100) ¼ 1.3% of the control
population would be expected to obtain a score
lower than the patient’s. This point estimate
can be supplemented with confidence limits on
the abnormality of the patient’s score using a
method developed by Crawford and Garthwaite
(2002).

The starting point for Mycroft et al.’s (2002)
method is a modified ANOVA that is the direct
equivalent of the modified t test outlined above
(i.e., the test would yield identical p values
because F on [1, n 2 1] df ¼ t2 on (n 2 1) df.
However, Mycroft et al. make a further modifi-
cation to this ANOVA by replacing the standard
critical values for F with values that are larger
and therefore more conservative.

The rationale for this modification is as follows.
First, Mycroft et al. (2002) argue that when an
individual patient is compared to a control
sample, this should be conceptualized as a test
for a difference in population means (i.e., a
notional population of patients should be
invoked). Second, they argue that, relative to the
control population, the notional patient popu-
lation will have markedly increased variance.
Thus Mycroft et al. test whether the case comes
from a notional population whose mean score
differs from the mean score of the control popu-
lation and explicitly assume that the variance that
should be attached to the score of the case is
bigger than the variance for controls.

Mycroft et al. (2002) also argue that if the
increase in variance is ignored, there will be an
inflation of the Type I error rate. (In this context
a Type I error occurs when it is incorrectly con-
cluded that a patient has a deficit, or, in Mycroft
et al.’s terms, that the population means differ.)

Mycroft et al.’s (2002) use of modified F values
deals with this perceived problem. They suggest
that, in contrast, Crawford and Howell’s (1998)
method “fails to note the consequences of
unequal variance . . . and cannot be considered
reliable when there are differences in variability
between patients and controls” (p. 294). That is,
they argue that Crawford and Howell’s method
will not control the Type I error rate.
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Crawford, Garthwaite, Howell, and Gray
(2004) have argued that Mycroft et al.’s (2002)
concern over Type I errors is misplaced (this
issue is returned to in a later section). They also
suggested that (a) in general, the statistical power
to detect an acquired deficit in single-case studies
will be low (because an individual patient, rather
than a sample, is compared to a control sample
that will often itself have a modest n), and (b)
Mycroft et al.’s method will produce a further
(unnecessary) diminution of power and should
thus be avoided.

Both these statements, however, were made
without supporting empirical evidence.
Therefore, in the present study, Monte Carlo
simulation is used to quantify the extent to
which Mycroft et al.’s (2002) suggested modifi-
cation to Crawford and Howell’s (1998) approach
reduces the statistical power to detect a deficit. In
the course of conducting this simulation it will also
be possible to more broadly examine the issue of
the statistical power to detect a deficit in single-
case studies. Given that a prima facie case can be
made that power will be low, it is surprising that
little attention has been given to such a fundamen-
tal issue. One recent study (Crawford &
Garthwaite, 2005a) looked at power in single-
case studies but was concerned solely with the
power to detect dissociations.

Before presenting the Monte Carlo simulation
studies it is worth noting that the statistically
sophisticated reader may wonder why simulation
methods were used in preference to a direct
analytical treatment of these issues. We had two
reasons for this. First, although it would have
been relatively straightforward to tackle some of
the simpler scenarios under study using an analytic
approach, this is not the case for some of the more
complex scenarios (e.g., studying the effects of
non-normal data in Study 2). Second, we took
the view that empirical demonstrations of the
level of statistical power in various scenarios
would be more accessible to the nonstatistician.
Finally, note that in all the simulations that
follow, alpha for the tests of Crawford and
Howell (1998) and Mycroft et al. (2002) was
set at .05.

STUDY 1: STATISTICAL POWER
TO DETECT A DEFICIT IN
SINGLE-CASE STUDIES

As sample size is an important determinant of
statistical power, power will almost inevitably be
modest in single-case studies (Crawford, 2004;
Crawford, Garthwaite, & Gray, 2003). As noted
above, an individual patient (rather than a
sample of patients) is compared to a control
sample, and, furthermore, this sample will com-
monly have a modest n. An additional factor that
serves to reduce power is the wide variability in
cognitive abilities in the general population. A
neurological patient’s performance on a given cog-
nitive task will reflect not only the effects of any
insult but will also be strongly influenced by her/
his premorbid competency (Crawford, 1992,
2004; Deary, 1995; Lezak, 1995). Take the
example of a patient whose premorbid ability on
a task was high relative to demographically
matched controls (say 1 SD above the control
mean). Any acquired deficit would need to be
large before we have any realistic possibility of
detecting it; for example, a 1-SD deficit would
simply place the patient’s postmorbid score
exactly at the mean.

To an outside observer these points may lead to
a pessimistic view of the prospects for the single-
case enterprise. In reality, of course, deficits are
routinely detected because the effect sizes in this
area of enquiry can be very large; that is, neuro-
logical damage can have catastrophic effects on
cognitive functioning.

In the first study we run a Monte Carlo simu-
lation to examine the power of Crawford and
Howell’s (1998) method and that of Mycroft
et al. (2002) to detect an acquired deficit. The
bar is set low in this simulation and in those that
follow on from it. That is, we take it as a given
that the power to detect small-to-moderate
effects will be very low and thus limit attention
to the ability of the methods to detect deficits
that are large (or very large) in magnitude but,
nevertheless, not uncommon following neurologi-
cal damage. This first simulation in part also serves
as an introduction for the reader to the basic
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rationale and methods used in the simulations
ahead of modelling more complex scenarios in
later studies.

Method

The Monte Carlo simulation was run on a PC and
implemented in Borland Delphi (Version 4). The
algorithm ran3.pas (Press, Flannery, Teukolsky, &
Vetterling, 1989) was used to generate uniform
random numbers (between 0 and 1), and these
were transformed by the polar variant of the
Box–Muller method (Box & Muller, 1958) to
sample from a normal distribution.

The simulation was run with five different
values of n (the sample size of the control
sample): 5, 10, 20, 50, and 100. For each of
these values of n, 1,000,000 samples of n þ 1
observations were drawn randomly from a stan-
dard normal distribution. On each Monte Carlo
trial, the first n observations were used to rep-
resent the scores of the control sample, and the
(n þ 1)th observation was used to represent the
single case. The single case was then “lesioned”
to impose a (large) 2-SD deficit (as the obser-
vations were sampled from a standard normal
distribution, this simply required subtracting 2
from the score).

In order to avoid any potential confusion it
should be made explicit that this simulation pro-
cedure is designed to model patients with acquired
deficits: It does not produce patients with scores
that are simply 2 SDs below the mean of controls.
Rather, the method recognizes that (a) patients are
initially members of the healthy control popu-
lation until the onset of their lesion, and (b)
there will be premorbid differences in competency
on the task.

Having sampled observations to represent con-
trols and a single case, Crawford and Howell’s
(1998) test was then applied to these data; t
values that were negative (i.e., where the score of
the single case was below the control sample
mean) and exceeded the one-tailed critical value
for t (a ¼ .05) on the appropriate degrees of
freedom (n 2 1) were recorded. That is, we
recorded whether Crawford and Howell’s

method had successfully detected that the case
had a deficit.

Two versions of Mycroft et al.’s (2002) method
(hereafter labelled as intermediate and extreme)
were also applied to the same data. Mycroft et al.
tabulated a range of modified critical values for
F; in practice the value employed would depend
on a user’s estimate of the extent to which the
standard deviation of the notional population of
patients would be larger than that of the controls.
Critical values were provided to cover estimates
ranging from 1.25 times larger through to 5
times larger. We applied an intermediate critical
value (notional patient population SD ¼ 2.5
times that of controls) and an extreme critical
value (SD ¼ 5 times that of controls). These criti-
cal values are for a two-tailed test (in keeping with
Mycroft et al.’s advocacy of a two-tailed test,
modified critical values for a one-tailed test were
not tabulated in their paper).

Finally, we then repeated the procedure
described but imposed a (very large) 3-SD deficit
on the case. Thus, in total, 10 million Monte
Carlo trials were run; 1 million trials for each of
the five sample sizes combined with the imposition
of either a 2- or a 3-SD deficit on the single case.

Results and discussion

The full results of the Monte Carlo simulation are
presented in Table 1; the basic pattern of these
results can readily be assimilated by referring to
Figure 1, which plots power to detect a 2-SD
deficit as a function of control sample n and the
method employed. It can be seen that, for
Crawford and Howell’s (1998) test, the statistical
power to detect a large (2-SD) deficit ranges
from low (when the control n is small; minimum
power ¼ 44.83%) to moderate (for larger n;
maximum power ¼ 63.0%).

In contrast, power is very low for the intermedi-
ate version of Mycroft et al.’s (2002) method
(ranging from 11.14% to 13.33%) and is extremely
low for the extreme version of their method
(ranging from 1.07% to 4.16%). Two factors con-
tribute to the very low power of Mycroft et al.’s
method relative to that observed for Crawford

880 COGNITIVE NEUROPSYCHOLOGY, 2006, 23 (6)

CRAWFORD AND GARTHWAITE



and Howell’s (1998) method. First, because of
Mycroft et al.’s concern over inflation of the
Type I error rate, they employ conservative critical
values. Second, their test is two-tailed, whereas
Crawford and Howell employ a one-tailed test.

Although it was appropriate to incorporate
both these features in the simulation (i.e., the

procedure recommended by Mycroft et al., 2002,
should be faithfully implemented), it would have
been useful to study their effects in isolation. To
achieve this, the simulation was rerun, substituting
two-tailed for one-tailed critical values for
Crawford and Howell’s (1998) test. In this scen-
ario, the only difference between the two
methods lies in Mycroft et al.’s use of modified
(i.e., conservative) critical values. For the two-
tailed version of Crawford and Howell’s method
power ranged from 29.04% for a n of 5 to
50.43% for a n of 100. Although it can be seen
that power has been lowered by the use of a two-
tailed test, these percentages are still very much
higher than the equivalent percentages for the
intermediate and extreme versions of Mycroft
et al.’s method. Hence it is clear that the modified
critical values must carry most of the blame for the
low levels of power of Mycroft et al.’s test.

In the present simulation, the power of
Crawford and Howell’s (1998) and Mycroft
et al.’s (2002) methods to detect a very large
(3-SD) deficit was also examined. It can be seen
from Table 1 that for Crawford and Howell’s
method power is high (above 80%, with the excep-
tion of a control sample n of 5) and is over 90% for
control sample ns of 50 and 100. However, it must
be stressed that control samples of this size are very
rare in single-case studies, and, moreover, a 3-SD
deficit represents a very severe, catastrophic,
impairment.

In contrast, for Mycroft et al.’s (2002) method,
although power is obviously higher for a 3- rather
than a 2-SD deficit, it remains the case that in
absolute terms power is still low. For the inter-
mediate version, maximum power observed was
44.81% (for a control sample size of 100); for the
extreme version, maximum power was 10.77%
(for a sample size of 5).

Finally, the present results have some additional
implications for the conduct of single-case
research. For Crawford and Howell’s (1998)
method it can be seen that, for both 2- and 3-SD
deficits, power increases appreciably with increas-
ing n up to an n of 20. Thereafter, although (as
expected) power continues to increase, it is
subject to diminishing returns; for example, for a

Figure 1. Power to detect a large (2-SD) deficit as a function of

control sample size and method employed.

Table 1. Simulation results: Powera to detect a deficit as a function

of control sample size, size of deficit, and inferential method

Deficitb n

Crawford and

Howell

(1998)

Mycroft et al. (2002)

Intermediate Extreme

2 5 44.83 11.14 4.16

10 54.63 12.51 2.56

20 59.46 13.09 1.74

50 62.06 13.33 1.15

100 63.00 13.33 1.07

3 5 72.80 25.90 10.77

10 83.87 34.86 10.12

20 87.88 40.12 9.36

50 90.11 43.19 8.77

100 90.73 44.81 8.92

aIn percentages. bNumber of standard deviations.
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2-SD deficit, power is 59.46% for an n of 20 but
only rises to 63% when n is increased by a factor
of 5 to 100. This suggests that, in the interests of
achieving reasonable power to detect large effects,
control sample ns should be larger than those
employed in most existing single-case studies
(where ns in the range of 3 to 15 are most
typical) but that recruiting ns . 30 is not liable
to be worth the additional expenditure of effort.

STUDY 2: THE EFFECTS OF
DEPARTURES FROM NORMALITY
ON POWER TO DETECT A DEFICIT

An assumption underlying the use of both
Crawford and Howell’s (1998) method and that
of Mycroft et al. (2002) is that the control
samples against which a case is compared have
been drawn from a normal distribution.
However, it is not at all uncommon for the
scores of controls on neuropsychological tests to
depart from normality (Capitani & Laiacona,
2000; Crawford & Garthwaite, 2005b).

Ideally, researchers would carefully select the
measures they employ in single-case studies so as
to avoid potential problems arising from non-
normal control data. However, for many published
single-case studies, it is clear from even a cursory
inspection of the control sample means and stan-
dard deviations that the control data are negatively
skewed. That is, the standard deviations tell us
that, were the data normally distributed, a substan-
tial percentage of scores would lie above the
maximum obtainable score on a particular task,
yet we know that this is impossible; hence the
data must be heavily skewed (Crawford &
Garthwaite, 2005a).

Skew will be almost inevitable when the tasks
employed measure abilities that are largely within
the competence of most healthy individuals. In
this situation, negative skew will occur when the
measure of interest is based on the number of
items passed (i.e., there will be ceiling effects)
and positive skew when the measure is an error
rate (i.e., there will be floor effects). Evidence of
severely skewed control data can be found in the

literature on recognition of facial expression of
emotion (Milders, Crawford, Lamb, & Simpson,
2003) and in the extensive single-case literature
on category-specific object naming. For example,
in a recent review of single-case studies of the
living versus nonliving distinction, it was reported
that the accuracy of naming in controls was in
excess of 95% in the vast majority of these
studies (Laws, Gale, Leeson, & Crawford, 2005).

Another potential problem that will arise in the
conduct of single-case research is that the distri-
bution of control data will be overly peaked and
have heavier tails than would a normal distri-
bution; that is, the control data will be leptokurtic
(it follows from the fact that leptokurtic distri-
butions are more peaked and have heavier tails
that they also have thinner “shoulders” than a
normal distribution). Leptokurtic distributions
are pervasive in many areas of scientific enquiry
including psychology, economics, and biology
(DeCarlo, 1997; Lange, Little, & Taylor, 1989).
For example, IQ tests are regarded as prototypical
examples of normally distributed psychological
data; moreover, transformations are routinely
applied to these tests to force them to conform
to a normal distribution. Despite this, measured
IQ commonly exhibits highly significant leptokur-
tosis (Burt, 1963).

Single-case researchers also have to face the
possibility that their control data may have both
these aforementioned features simultaneously.
That is, the control data may be skewed and lepto-
kurtic. Indeed, it is likely that control data more
commonly possess both these characteristics
rather than either alone. As noted, many neuro-
psychological tasks (particularly those developed
for use in single-case studies) measure abilities
that are largely within the competence of many
healthy individuals and thus yield ceiling or
near-ceiling levels of performance in control
samples; this will produce negative skew and
leptokurtosis (i.e., the distribution will be overly
peaked as scores will accumulate at, or near, the
maximum possible score).

The effects of non-normal control data on
inferential methods for detecting a deficit in
single-case studies have recently been examined
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using Monte Carlo methods. These studies,
however, were solely concerned with examining
the effects on Type I error rates; that is, they esti-
mated the percentage of the (cognitively intact)
control population that would incorrectly be
identified as exhibiting a deficit. The results
were, in general, fairly reassuring for single-case
researchers.

For Crawford and Howell’s (1998) method, the
presence of skew raised the Type I error rates
above the specified error rate (of 5%) but the
effects were by no means catastrophic, even when
skew was very extreme. For example, when skew
was severe (g1 ¼ –0.7) the error rate for a
control sample size of 20 was 6.95%. Similarly,
when the distribution of scores in the control
population was leptokurtic, error rates were not
seriously affected. The combination of skew and
leptokurtosis produced the most serious inflation
of the error rate but, even so, Crawford and
Howell’s method was more robust than might
have been anticipated; for example, when severe
skew was combined with severe leptokurtosis, the
error rate was 7.45% for a control sample size of 20.

As noted, these studies were solely concerned
with examining control of the Type I error rate.
To our knowledge, there have been no previous
attempts to quantify the effects of departures
from normality on the power to detect deficits in
single-case studies (i.e., the extent to which infer-
ential methods avoid committing Type II errors
has not been examined). Therefore, in Study 2
we quantify the effects of skewed and/or lepto-
kurtic control data on the power of Crawford
and Howell’s (1998) and Mycroft et al.’s (2002)
methods to detect a deficit.

Method

Simulations were run using a similar approach to
that employed in Study 1—that is, 1,000,000
samples of nþ 1 observations were drawn for
five different sample sizes, and a deficit was
applied to the single case. However, instead of
sampling observations from a normal distribution,
observations were sampled from distributions that
were skew, leptokurtic, or both.

Sampling from leptokurtic distributions
The most common approach to modelling the
effects of leptokurtic distributions on test statistics
is to sample from t distributions (Lange et al.,
1989). This is potentially confusing as Crawford
and Howell’s (1998) method uses the t distribution
to test for a significant difference between the case
and controls. However, as noted, the assumption
in applying this test (and Mycroft et al.’s, 2002,
test) is that the controls were drawn from a
normal distribution; in the present study we
examine the effects of violating this assumption
by drawing controls from leptokurtic distributions,
and it so happens that t distributions have this
required characteristic.

In the present study we sampled from t distri-
butions on 7 (moderate leptokurtosis) and 4
(severe leptokurtosis) df. Kurtosis (b1) is 5 for a t
distribution on 7 df compared to a value of 3 for
a normal distribution; the kurtosis for a t distri-
bution on 4 df is even more extreme but is unde-
fined (because the denominator in the formula
for kurtosis requires subtracting 4 from the df
and is hence zero).

To sample from these distributions, obser-
vations representing the controls and the single
case were sampled initially from a normal distri-
bution. Each observation was then divided by
p

(x2/7) or
p

(x2/4) where x2 is a random draw
from a chi-square distribution on 7 or 4 df,
respectively. The resultant quantities are obser-
vations from t distributions on 7 or 4 df; that is,
they are observations that are drawn from moder-
ately or severely leptokurtic distributions.

Sampling from skew distributions
Three negatively skewed distributions were speci-
fied, ranging from a distribution with moderate
skew (g1¼ –0.31), through one with severe skew
(–0.70), to one with extreme skew (–0.99). The
method used to sample observations representing
controls and the single case from these distri-
butions (termed skew-normal distributions) was
that of Azzalini and colleagues (Azzalini &
Capitanio, 1999; Azzalini & Dalla Valle, 1996);
the technical details are presented in Appendix B.
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Sampling from distributions that are both skew
and leptokurtic
To sample from distributions that possessed both
skew and leptokurtosis we followed the procedure
outlined in the section on skew distributions but,
after obtaining skew-normal observations, these
observations were then divided by

p
(x2/7) (mod-

erate leptokurtosis) or
p

(x2/4) (severe leptokurto-
sis) where x2 was a random draw from a chi-square
distribution on 7 or 4 df, respectively. The resul-
tant distributions are skew t distributions; they
depart from a normal distribution in that they
are both leptokurtic and (negatively) skewed
(Azzalini & Capitanio, 2003).

Graphical illustration of some of the distri-
butions used are presented as Figure 2; the
shaded areas show the densities for distributions
possessing both skew and leptokurtosis (i.e.,
skew-t distributions), the unshaded lines show
the densities for the equivalent distributions pos-
sessing skew alone (i.e., skew-normal distri-
butions). In all cases the distributions have been
rescaled to have a variance of 1 (so that visual com-
parison of their shapes is meaningful).

Imposing a deficit on the single case
In Study 1, a 2- or 3-SD deficit could be applied to
the score of the single case by simply subtracting 2
or 3 from their initial score, because observations
were drawn from a standard normal distribution.
Things are a little more complicated in the
present study because, as alluded to in the last
section, the standard deviations of the non-
normal distributions are not 1; the quantity
subtracted therefore differed according to the dis-
tribution used. For example, the standard deviation
of a t distribution on 4 df (used to represent severe
leptokurtosis) is 1.4142. Therefore, in this case, to
impose a 2-SD deficit we subtracted 2.8284 from
the single-cases’ initial scores. Similarly, the stan-
dard deviation of a skew-normal distribution with
g1 ¼ –0.99 (used to represent extreme negative
skew) is 0.6035, and, therefore, 1.207 was sub-
tracted from the single-cases’ initial scores.

Because of the larger number of simulations
involved in the present study we limited attention
to a 2-SD deficit. In total 60 million Monte Carlo

trials were run: 1 million trials for each combi-
nation of five sample sizes, four levels of skew
(absent to extreme), and three levels of leptokur-
tosis (absent to severe).

Figure 2. Graphical illustration of some of the distributions

employed in Study 2; the shaded area shows the density for

distributions possessing both skew and leptokurtosis (skew-t), and

the unshaded line shows the density for the equivalent

distributions possessing skew alone (skew-normal). (a) ¼

moderate skew/severe leptokurtosis; (b) ¼ extreme skew/severe

leptokurtosis. Note that the skew-t and skew-normal distributions

have been scaled to have a common variance of 1.
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Results and discussion

The results of the simulations are presented in
Table 2. This table presents power to detect a
large (2-SD) deficit as a function of the inferential
method applied, the control sample size, degree of
skew, and degree of leptokurtosis. The first block
of this table reproduces the results from Study
1—that is, it presents power when the control
population distribution was neither skew nor lep-
tokurtic; these data provide a comparison standard
against which to assess the effects of departures
from normality.

Attending first to the results for Crawford and
Howell’s (1998) method when the control distri-
bution is leptokurtic, it can be seen that power is
higher than when normality holds. However, the
effects are relatively modest; for example, for a
control sample of size 20, the power is 59.46%
for a normal distribution but is 64.11% when the
control distribution is severely leptokurtic. This
pattern of results arises because of the heavy
tails; more controls are already in the lower tail
of this distribution than would be in the tail of a
normal distribution, and so when a deficit is
imposed (i.e., they move from being a previously
cognitively intact, healthy control to being a
patient with a deficit) they are more likely to be
detected.

In contrast to the results for leptokurtosis,
negative skew lowers the power of Crawford and
Howell’s (1998) method to detect a deficit,
although again the results are not dramatic. For
example, when skew is extreme, power is 53.88%
for a control sample size of 20 compared to
59.46% for a normal distribution. This pattern of
results can be attributed to the fact that when
negative skew is present, more controls are found
in the upper region of the distribution, so that
when a deficit is imposed, their resultant score
(i.e., their premorbid score minus the 2-SD
deficit) is not sufficiently low to be detected.

When the control distribution is both skew and
leptokurtic, as may be common in single-case
research, the effects observed when distributions
feature either of these characteristics alone tend
to cancel each other out. The net result is that,

as can be seen from Table 2, power to detect a
deficit when distributions are both skew and lepto-
kurtic does not differ to any great extent from
power when the control distribution is normal.
For example, power in the face of extreme skew
and severe leptokurtosis is 63.51% for a control
sample size of 20, compared to 59.46% when nor-
mality holds. Note, however, that there is an
interaction between the presence of skew and
leptokurtosis and sample size: With large sample
sizes power is marginally lower than that for a
normal distribution, whereas with very small
sample sizes, power is appreciably higher (e.g.,
power is 58.32% for extreme skew and severe lep-
tokurtosis for a control n of 5 compared to 44.83%
for a normal distribution).

Turning to the results for Mycroft et al.’s
(2002) method, it can be seen from Table 2 that,
in both its intermediate and extreme ver-
sions, leptokurtosis raises the power to detect a
deficit, but the effects are relatively modest, and
power remains very low in absolute terms (e.g.,
power is 16.18% when leptokurtosis is severe for
a control sample size of 20 compared to 13.09%
for a normal distribution). For skew, it can be
seen that, in contrast to the results for Crawford
and Howell’s (1998) method, power is also
higher than that observed for a normal distri-
bution. The effects are quite large, particularly
for the extreme version of their method,
although, again, power is still very low in absolute
terms.

When the combination of skew and leptokurto-
sis is examined it can be seen that the effects are
additive; in general power is markedly higher
than when the control distribution is normal. For
example, power is 21.93% for a control sample n
of 20 for the intermediate version, compared to
13.09% for a normal distribution. Again,
however, power remains low in absolute terms
even in these circumstances and is well below
that observed for Crawford and Howell’s (1998)
method. For Mycroft et al.’s (2002) method it
can also be seen that the increase in power
is related to sample size; the effects are marked
for small sample sizes but become marginal for
large ns.
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Table 2. The effects of departures from normalitya on power to detect a 2-SD deficit

No skew Moderate skew Severe skew Extreme skew

n C&H M-I M-E C&H M-I M-E C&H M-I M-E C&H M-I M-E

No leptokurtosis 5 44.83 11.14 4.16 44.90 12.35 4.87 45.17 14.18 6.18 45.37 15.82 7.48

10 54.63 12.51 2.56 53.60 13.58 3.28 52.22 14.96 4.42 51.34 16.01 5.34

20 59.46 13.09 1.74 57.86 13.81 2.40 55.67 14.79 3.34 53.88 15.38 4.04

50 62.06 13.33 1.15 60.46 13.73 1.80 57.70 14.32 2.54 55.22 14.88 3.09

100 63.00 13.33 1.07 61.45 13.57 1.65 58.44 14.15 2.40 55.51 14.54 2.92

Moderate leptokurtosis 5 47.77 13.32 5.36 48.47 15.82 6.95 49.73 18.23 8.82 50.67 20.38 10.63

10 56.67 14.46 3.64 55.32 16.41 5.18 55.06 18.25 6.66 55.17 19.76 7.92

20 60.89 13.94 2.56 58.40 15.47 3.92 57.24 16.59 5.00 56.53 17.46 5.79

50 63.70 12.90 1.79 60.24 13.87 2.91 58.10 14.51 3.70 56.35 14.97 4.17

100 64.67 12.32 1.59 60.94 12.99 2.63 58.26 13.44 3.29 55.98 13.81 3.64

Severe leptokurtosis 5 52.61 16.75 7.27 54.66 20.71 10.08 56.64 24.07 12.68 58.32 26.86 15.12

10 60.51 17.67 5.23 60.24 21.09 7.81 61.37 23.69 9.88 62.59 25.90 11.62

20 64.11 16.18 3.65 62.37 18.69 5.73 62.68 20.49 7.17 63.51 21.93 8.28

50 66.23 13.79 2.40 63.00 15.27 3.97 62.29 16.26 4.84 62.53 17.07 5.39

100 67.10 12.24 2.03 62.94 13.37 3.39 61.42 14.02 3.98 60.93 14.55 4.41

Note: Results are presented for Crawford and Howell’s (1998) method (C&H), and the intermediate (M-I) and extreme (M-E) versions of Mycroft et al.’s (2002) method.
aNegative skew alone, leptokurtosis alone, or their combination.
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In summary, for Crawford and Howell’s
(1998) method, skew and leptokurtosis, either
alone or in combination, do not exert a marked
effect on power to detect a deficit (the exception
being for very small sample sizes when the
degree of departure is very marked). Given that
such departures from normality are liable to be
common features of single-case studies, the
present results, when taken with the correspond-
ing results from studies examining Type I errors
(Crawford & Garthwaite, 2005b; Crawford,
Garthwaite, Azzalini, Howell, & Laws, 2006),
provide reassurance for researchers. It would
appear that for Crawford and Howell’s method,
the effects of violating the assumption of normal-
ity are, in general, fairly modest; that is, the
method is surprisingly robust. For Mycroft
et al.’s (2002) method, departures from normality
exert a greater influence. With small to moder-
ately sized control samples power is increased
markedly. However, given that power remains
universally low in absolute terms for this
method, these latter effects are of limited practical
importance.

STUDY 3: THE EFFECTS OF
MEASUREMENT ERROR ON POWER
TO DETECT A DEFICIT

In introducing Study 1 it was noted that a number
of factors conspire to lead to low power to detect a
deficit in single-case studies. A further factor that
will serve to reduce power is the presence of
measurement error. From the perspective of clas-
sical test theory, an individual’s observed score is
an amalgam of their true score (the average score
obtained if the individual was administered an
infinite number of parallel versions of the task)
and random measurement error. If a neurological
insult reduces the true score by a given amount
this true score deficit will not be faithfully
reflected in the observed score. In the present
study we conduct a Monte Carlo simulation to
examine power to detect a large (2-SD) or very
large (3-SD) deficit in the presence of measure-
ment error.

We also quantify the size of deficit required to
achieve 80% power to detect a deficit as a function
of control sample size, degree of measurement
error, and inferential method. A criterion of 80%
power is widely taken as indicating a high, or at
least acceptable, level of statistical power for
group studies (e.g., in clinical trials, etc.). It is
therefore of interest to apply this yardstick to
single-case research and to examine the relative
contributions of control sample size, measurement
error, and method to determining the size of
deficit required. Such an analysis is in keeping
with our general aim of subjecting single-case
methods to a degree of scrutiny similar to that
applied to group-based research. It was impractical
to study this latter issue using simulation, and
therefore the problem is tackled directly using an
analytic approach.

Method

Simulation study
A modified version of the simulation procedure
described in Study 1 was used to quantify the
effect of measurement error on the power to
detect a deficit. That is, five sample sizes were
used (5, 10, 20, 50, and 100), and on each trial
an additional observation was drawn to represent
the single case; a 2- or 3-SD deficit was then
applied to the single case. As in Study 1, sampling
of control cases and the single case was from a
standard normal distribution; in the present simu-
lation these observations are used to represent the
true scores of controls and the case. For each
control and the single case, a further random
draw was then made from a normal distribution
having a mean of zero and a variance correspond-
ing to the degree of measurement error required
(these observations represented the error scores
for controls and the case).

For example, to model the effects of a task
reliability of .6, the variance of this latter distri-
bution was set at 0.66667. These scores were
then added to the true scores of controls and the
single case to obtain observed scores. (Given that
the true scores had a variance of 1, it can be seen
that, in this example, the population variance of
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observed scores is 1.66667, and the required 60:40
ratio of true score variance to error variance is
thereby achieved.) It should be noted that the
2- or 3-SD deficit was imposed on the true score
rather than the observed score.1

As in previous simulations, on each Monte
Carlo trial the three methods of testing for a
deficit were applied (i.e., Crawford & Howell’s,
1998, method and the intermediate and extreme
versions of Mycroft et al.’s, 2002, method), and
the percentage of cases correctly identified was
recorded.

Analytic approach to quantifying the size of deficit
required for 80% power
Looking first at Crawford and Howell’s (1998)
method, a deficit is detected in the case if, using
the notation of Equation 1,

�x� x�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ=n

p . tn�1;a (2)

where tn21;a is the critical value of a t distribution
on (n 2 1) df for a one-sided hypothesis test with
significance level a. Suppose the case has a deficit
of h, and the reliability is rxx. Also, let tn21(d)
denote a variate that has a noncentral t distribution
on (n 2 1) df with noncentrality parameter d. Let
d� be the value of d for which

Pr(tn�1(d�) . tn�1;a) ¼ 0:8 (3)

In Appendix C we show that h� ¼ d�
p

[(n þ 1)/
(rxxn)] is the minimal deficit that Crawford and
Howell’s (1998) method detects with a power of
0.8.

The test of Mycroft et al. (2002) assumes that
the case comes from a population whose variance
differs from the variance of the control population.
Define k as the ratio, k ¼ (variance of case)/
(variance of controls). In Appendix C we show

that if d� is the value of d for which

Pr tn�1(d#) . tn�1,a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
knþ 1

nþ 1

r !

þ Pr tn�1(d#) , �tn�1,a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
knþ 1

nþ 1

r !
¼ 0:8,

(4)

then h# ¼ d#p[(n þ 1)/(rxxn)] is the minimal
deficit that the test of Mycroft et al. detects with
a power of 0.8. The test of Mycroft et al. is two-
tailed so Equation 4 contains two probabilities
on its left-hand side and uses critical values for a
significance level of a/2 rather than a. While
deriving these formulae, other theoretical results
were developed that relate to the test of Mycroft
et al. In particular, the Appendix gives a formula
for the exact critical values of the test (Mycroft
et al. estimated critical values by simulation and
only tabulated critical values for limited values of
k and n).

Results and discussion

The simulation results obtained when measure-
ment error was present are presented in Table 3;
the results obtained in the absence of measurement
error (i.e., when rxx¼ 1) are also incorporated. The
basic pattern of results can readily be appreciated
by referring to Figure 3. This figure presents
power for the methods as a function of the
reliability of scores; the values plotted are limited
to those obtained for a control sample n of 20.

It can be seen that for Crawford and Howell’s
(1998) method, measurement error exerts an
appreciable effect on the power to detect a deficit;
for example, power was 59.46% in the absence of
measurement error for a n of 20 but falls to
53.64% when task reliability was .85 and falls to

1 Some readers will realise that it was unnecessary to sample separately from true score and error distributions. For instance, in the

example just given, the simulation could have been run simply by sampling from a single normal distribution with a variance of

1.66667 (SD ¼ 1.291). However, in the former approach it is made explicit that we are modelling the effects of varying degrees

of measurement error and that the deficit is imposed on the true score (i.e., subtracting 2.0 from the case’s score imposes a 2-SD

deficit on the true score). In other words, the approach was used for didactic purposes.
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Table 3. Simulation results: Power to detect a deficit as a function of control sample size, reliability of scores, size of deficit, and inferential method

rxx

Crawford and Howell (1998) Mycroft et al. (2002): Intermediate Mycroft et al. (2002): Extreme

Deficit a n 1.0 .85 .7 .6 1.0 .85 .7 .6 1.0 .85 .7 .6

2 5 44.83 40.25 35.45 32.02 11.14 9.51 7.93 6.88 4.16 3.48 2.88 2.47

10 54.63 49.23 43.26 38.99 12.51 10.25 8.13 6.72 2.56 1.98 1.50 1.20

20 59.46 53.64 47.16 42.62 13.09 10.43 7.95 6.47 1.74 1.25 0.86 0.66

50 62.06 56.16 49.55 44.73 13.33 10.45 7.82 6.22 1.15 0.80 0.52 0.39

100 63.00 57.11 50.29 45.42 13.33 10.35 7.64 6.09 1.07 0.71 0.45 0.32

3 5 72.80 66.69 59.69 54.35 25.90 21.73 17.73 15.08 10.77 8.82 7.04 5.85

10 83.87 78.50 71.31 65.57 34.86 28.44 22.29 18.24 10.12 7.57 5.43 4.15

20 87.88 83.09 76.26 70.59 40.12 32.33 24.78 20.00 9.36 6.66 4.37 3.18

50 90.11 85.46 78.99 73.41 43.19 34.92 26.46 21.03 8.77 5.77 3.57 2.41

100 90.73 86.20 79.84 74.22 44.81 35.68 26.86 21.28 8.92 5.74 3.43 2.31

Note: rxx ¼ reliability of scores.
aNumber of standard deviations.
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42.62% when reliability was .6. However, it can
also be said that the effect of measurement error
is by no means catastrophic; a moderate level of
power is retained if the control sample is of a
reasonable size. Furthermore, it is to be hoped
that single-case researchers will take sufficient
care in selecting or developing their tasks, such
that reliabilities below 0.7 will be rare in practice.

It can be seen that power is also reduced when
measurement error was present for Mycroft et al.’s
(2002) method although, particularly for the
extreme version, the effects are attenuated
because of the low baseline rate. Nevertheless, it
can also be seen that even if measurement error
is relatively modest, power can fall below 1% (for
the extreme version, power was below 1% in 8 of
the 20 scenarios examined). These levels of
power are extraordinarily low; for example, with
a control sample n of 100 and a task reliability of
.7, it can be estimated that 99.55% of patients
with large (2-SD) acquired deficits would be missed.

Analytic approach to quantifying the size of deficit
required for 80% power
The results of the power analysis are presented in
Table 4. This table lists the size of deficit, in

standard deviation units, required for 80% power
as a function of sample size, degree of measure-
ment error, and inferential method. To illustrate,
for Crawford and Howell’s (1998) method, with
a control sample size of 20, and a task reliability
of .8, a score that was 2.87 SDs below individuals’
premorbid scores would be required to achieve
80% power to detect an acquired deficit.

These results complement those presented in
Table 3 and demonstrate that, regardless of the
method employed, the probability of detecting a
deficit will only be high if the deficit is very
large. Deficits are only routinely detected because
neurological illness or disease can have cata-
strophic (i.e., very large) effects on cognition. In
passing, note that using the analytic approach for
Crawford and Howell’s (1998) method with a
task reliability of .7 and control sample size of
100, a deficit of approximately 3 SDs (3.01) is
required for 80% power to detect a deficit. This
accords very closely with the results of the
Monte Carlo simulation in which 79.8% of cases
were detected when a 3-SD deficit was imposed.

Although, as noted, the deficits required for
high power can all be classified as very large, it
can also be seen from Table 4 that there are never-
theless marked differences in the size of deficit
required for 80% power as a function of the
method employed. For Crawford and Howell’s
(1998) method, the size of deficit required
ranged from 2.52 SDs (for a control sample size
of 100 combined with no measurement error) to
4.30 SDs (for a control sample size of 5 and task
reliability of .6). For the extreme version of
Mycroft et al.’s (2002) method, the equivalent def-
icits were 5.32 and 10.28 SDs, respectively.

Finally, we should stress that the concern in this
study (and in those that preceded it) was with the
size of an acquired deficit or impairment, not with
a case’s obtained score (a case’s obtained score is a
function of the imposed deficit and the case’s pre-
morbid ability). Thus, for example, for Crawford
and Howell’s (1998) method with a control
sample size of 20, any cases with an obtained
score of 1.772 SDs or more below the mean of
the control sample will be recorded as exhibiting
a deficit (t will be � 1.729, and hence the

Figure 3. Power to detect a large (2-SD) deficit as a function of

task reliability and method employed (n for these data ¼ 20).
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one-tailed p is , .05); that is, the power to detect
such cases as exhibiting a deficit is 100%. However,
for many cases—that is, those of high premorbid
ability on the task in question—even a substantial
(e.g., 2-SD) deficit will not be sufficiently large to
produce an obtained score that is 1.772 SDs or
more below the mean of the control sample.

STUDY 4: THE EFFECTS OF
INCREASED MEASUREMENT
ERROR FOR THE SINGLE CASE ON
POWER TO DETECT A DEFICIT

Crawford and Howell’s (1998) method poses the
following question: Is the patient’s score suffi-
ciently below those of the controls to allow us to
reject the null hypothesis that the patient is an
observation from the control population?
Therefore, for this method, it is neither necessary
nor appropriate to be concerned with a notional
patient population.

Crawford and colleagues were primarily moti-
vated to adopt this perspective by statistical con-
siderations. However, a number of influential
theorists have come to exactly the same conclusion
based on neuropsychological considerations (e.g.,
Caramazza, 1986; Caramazza & McCloskey,
1988; Coltheart, 2001). It is argued that because
(a) the functional architecture of cognition is enor-
mously complex, and (b) there is substantial

variability in the site and extent of naturally occur-
ring lesions, each single case should be considered
to be unique (Vallar, 2000). McCloskey (1993)
provides an unequivocal expression of this position
when he states, “In the single-patient approach,
patients are not identified as members of patient
populations” (p. 729).

In contrast to Crawford and colleagues
approach, Mycroft et al. (2002) require a notional
patient population so that the variance that should
be associated with the score of the case is defined.
They suggest that this population should consist of
patients who are “equivalent” (p. 295) to the
patient of interest (Mycroft et al., 2002, p. 295),
but there has been subsequent debate on what
the term “equivalent” should mean in this
context (Crawford et al., 2004; Mitchell,
Mycroft, & Kay, 2004).

Further discussion may not resolve this issue so
it is worth searching for an alternative conception
that would be less contentious. One possible way
forward is to move from considering the variance
of a hypothetical population of patients to consid-
ering the variance of an individual case’s scores.
This is the position that Mitchell et al. (2004)
appear to take at some points in their original
paper; that is, they shift emphasis from variability
between patients to intraindividual variability in
performance.

Therefore we should consider the case in which
the task performance of a patient with neurological

Table 4. Size of deficit requireda to achieve 80% power to detect a deficit as a function of control sample size, reliability of scores, and

inferential method

rxx

Crawford and Howell (1998) Mycroft et al. (2002): Intermediate Mycroft et al. (2002): Extreme

n 1 .85 .7 .6 1 .85 .7 .6 1 .85 .7 .6

5 3.33 3.61 3.98 4.30 5.87 6.37 7.02 7.58 7.97 8.64 9.52 10.28

10 2.83 3.07 3.38 3.65 4.68 5.07 5.59 6.04 6.29 6.83 7.52 8.13

20 2.65 2.87 3.16 3.41 4.27 4.63 5.11 5.51 5.71 6.20 6.83 7.37

50 2.55 2.76 3.04 3.29 4.07 4.55 4.86 5.25 5.41 5.87 6.47 6.99

100 2.52 2.73 3.01 3.25 4.00 4.34 4.78 5.17 5.32 5.77 6.35 6.86

Note: rxx ¼ reliability of scores.
aNumber of standard deviations.
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damage will be less reliable than that of matched
controls; that is, the patient’s scores within a test
session (or across sessions) will contain more
measurement error than would those of control
participants. This can be reasonable, provided
that the loss of reliability occurs in the context of
impaired performance. That is, allowing different
reliabilities for the case and controls is inappropri-
ate when considering Type 1 errors, but can be
reasonable when considering Type 2 errors or eval-
uating power; see later section. In Study 4 we
model the effects of a patient’s score containing
more measurement error than controls on statisti-
cal power in single-case research. As was the case
for the previous studies, we believe that the study
of this issue has implications for single-case
research that extend well beyond the specific com-
parison of the two methods.

Method

Simulations were run using a similar approach to
that employed in Study 1—that is, 1,000,000
samples of nþ 1 observations were drawn for
five different sample sizes. However, in this simu-
lation the reliability was set at .85 for the scores of
controls on all Monte Carlo trials but was varied
for the scores of the single-cases: Three levels of
reliability were incorporated (.7, .6, and .5). Thus,
for example, when task reliability was .7 for a
single case, the error attached to a case’s score
was sampled from a normal distribution with a

mean of zero and variance of 0.4286; this error
was then added to the true score to obtain the
observed score. As in Study 3, the deficit was
applied to the true scores of the single cases
rather than their observed scores (i.e., it represents
the true level of deficit). In this simulation we limit
attention to a 2-SD deficit.

To summarize, in this simulation the cases have
a deficit (and the concern is to study how success-
fully such cases can be identified; i.e., it is a power
study) but, unlike Study 3, the cases also have more
variable performance than controls.

Results and discussion

The full results of the simulation are presented in
Table 5. The main focus of interest is the effect on
power of imposing differential amounts of
measurement error on the single cases.
Therefore, it is necessary to compare the present
results against those obtained when error was
present in controls and cases in equal measure.
This is provided by the results obtained from
Study 3 in which the reliabilities of the scores of
controls and the single cases were both set at
0.85. To avoid the reader having to switch
between two tables, these results are reproduced
as the first column of results for each method in
Table 5.

It can be seen from Table 5 that for Crawford
and Howell’s (1998) method, when the scores of
the single cases are more variable (i.e., unreliable)

Table 5. Simulation results: Power to detect a 2-SD deficit as a function of control sample size, reliability of patient’s scores (rxx) and

inferential method

rxx

Crawford and Howell (1998) Mycroft et al. (2002): Intermediate Mycroft et al. (2002): Extreme

n .85 .7 .6 .5 .85 .7 .6 .5 .85 .7 .6 .5

5 40.25 40.73 41.06 41.54 9.51 10.28 10.87 11.70 3.48 3.87 4.22 4.63

10 49.23 49.21 49.20 49.32 10.25 11.59 12.64 14.18 1.98 2.50 2.96 3.64

20 53.64 53.09 53.09 52.73 10.43 12.11 13.64 15.36 1.25 1.75 2.32 3.13

50 56.16 55.62 55.29 54.84 10.45 12.48 14.11 16.17 0.80 1.33 1.88 2.76

100 57.11 56.36 55.91 55.45 10.35 12.45 14.21 16.38 0.71 1.25 1.85 2.73

Note: rxx ¼ reliability of scores. The reliability of scores in the control sample was set at .85 for all these simulations.
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the effect on power to detect a deficit is marginal;
this holds even when the differential is large (i.e., a
reliability of .85 for controls vs .5 for the single
cases).

In contrast, it can be seen that for Mycroft
et al.’s (2002) method, in both its extreme and
intermediate forms, power increases consistently
as measurement error for the case increases
(although power is still very low in absolute
terms in all scenarios). This latter result runs
counter to the broad principle that random
measurement error will lower power (Schmidt &
Hunter, 1996). These results illustrate that the
effects of lower reliability of the scores of single
cases (i.e., more variable performance) on the
power to detect a deficit is conditional upon
the baseline level of power obtainable when the
scores of the single case possess the same level of
reliability as controls.

With both the test of Mycroft et al. (2002) and
the test of Crawford and Howell (1998), the
test statistic does not involve the variance of
the case’s score. Consequently, an increase in the
random variability of a case’s score will change
results in both directions. That is, some occasions
when a Type II error would have occurred will now
result in a deficit being detected, and vice versa.
Moreover, which effect is the greater is largely
determined by whether there are originally more
Type II errors or more occasions when a deficit
would have been detected. When the baseline
power is below 50%, as is the case for Mycroft
et al.’s method (and would be for Crawford and
Howell’s method if the effect size to be detected,
i.e. the deficit, was smaller in magnitude), power
will be increased. In contrast, when power is
above 50% (e.g., if the effect size was very large)
the expected pattern will then be observed—that
is, power will be reduced. From Table 5 we can
see this beginning to kick in for Crawford and
Howell’s method (e.g., with a control n of 50
power was 56.16% when control and patient
reliabilities were equivalent but falls to 54.84%
when the differential is at its largest). When base-
line power is at or around 50%, as is the case for
Crawford and Howell’s method in many of the
scenarios examined, the effects are marginal.

As far as we are aware this paradoxical effect of
measurement error (i.e., that power can be raised
when measurement error is increased) has not
been discussed in the existing literature on
power. This is presumably because the general
topic of differential reliability across individuals
or samples (as opposed to as across tasks) has
itself received little attention and because such
effects will only be obvious when power is low in
absolute terms. In any event, these results serve
to illustrate a broader point: General principles
that can normally be relied on to provide research-
ers with sound guidance can fail when applied to
single-case research.

Type I errors when testing for a deficit
The focus on these simulations has been on the
power to detect a deficit. In contrast, the issue of
control over the Type I error rate has not been
addressed (in the present context Type I errors
occur when cases that do not have a deficit are
classified as exhibiting a deficit). The reasons for
this is that theory tells us that Crawford and
Howell’s (1998) method should control Type I
errors in the absence of differentially greater
measurement error for cases; this was confirmed
by a Monte Carlo simulation conducted by
Crawford and Garthwaite (2005b). We should
note, though, that Mycroft et al. (2002) examined
Type I errors for the scenario in which cases are
more variable than controls. Their results from
Monte Carlo simulation suggested that large per-
centages of single cases would be incorrectly ident-
ified as exhibiting a deficit. However, it can be
logically argued that Mycroft et al.’s concern over
inflation of the Type I error rate is groundless.
Specifically, the results of their simulation are
not informative because of the unrealistic assump-
tions made.

As noted, Mycroft et al. (2002) consider that
when a single case is compared to a control
sample we should invoke a notional population
of patients and treat the situation as one
in which we are testing for a difference in popu-
lation means. Although we see things differently,
we can explore the implications of such a view.
The best way to illustrate Mycroft et al.’s position
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is with the help of Figure 4. This figure plots the
distribution of a control population in which the
mean is 100, and the standard deviation is 10;
this distribution can be used to represent scores
on any task of cognitive ability.

Superimposed on this distribution is a notional
patient population that has the same mean but a
larger standard deviation. (One can think of this
situation as one in which the patient population
and the control population were one and the
same population until the former suffered neuro-
logical damage.) Mycroft et al.’s (2002) intermedi-
ate example is used in this figure so the standard
deviation for the patient population is 25 (i.e.,
2.5 times that of the control population). This rep-
resents the situation that Mycroft et al. consider a
cause for concern; that is, they argue that because
Crawford and Howell’s method does not factor
in the increased variability in the patient popu-
lation, it will not control Type I errors.

This scenario, however, is not credible:
Neurological damage has had absolutely no effect
on the mean score of the patients (i.e., it has not
produced deficits) but has markedly increased the
variability of the patients’ scores. Note that it is
absolutely central to Mycroft et al.’s (2002) argu-
ment that neurological damage has not lowered
the mean of the patient population (i.e., produced
deficits). If there is any lowering of the patient
population mean, no matter how small, then the
issue of a Type I error does not arise: The popu-
lation means differ, and the only remaining

question is whether this effect can be detected
(i.e., the question becomes one of the power to
detect deficits).

The scenario can be seen to be even more unli-
kely when we consider that if there is no difference
in the means (as there cannot be if the concern is
with Type I errors), and variability is much
higher in the patient population, then any obser-
vation from the patient distribution that lies
below that of the control population must be
balanced exactly by observations that lie above it.
In other words, and as can be seen from
Figure 4, in Mycroft et al.’s (2002) scenario,
patients will frequently obtain cognitive test
scores that are vastly higher than those of controls
(or, equivalently, scores that are vastly higher than
their premorbid scores).

To conclude this discussion of Type I errors: In
essence Mitchell et al. (2004) argue (p. 758) that if
a reliable result is obtained using Crawford and
Howell’s (1998) method, then this may be
because (a) the patient does not have a deficit,
and her/his performance is simply more variable,
(b) the patient does have a deficit, and her/his per-
formance is also more variable, or (c) the patient
has a deficit but is no more variable than controls.
In view of the points made above we can safely dis-
count possibility (a), and in both (b) and (c) a Type
I error cannot be made as the patient has a deficit.

Of course, even after ruling out the possibility
of inflated Type I errors, it could still be argued
that a patient might have a very minor deficit on
a task but be much more variable in their perform-
ance (i.e., a Type I error has not occurred but the
result would potentially mislead investigators as
to the fundamental nature of the patient’s
problem). One response to this is simply to reiter-
ate that the patient still has a deficit. However,
researchers may be uneasy were this scenario to
occur in the real world.

Fortunately such a scenario is little more
credible than the previous scenario. For example,
picture a slight leftward movement of the patient
distribution in Figure 4 (i.e., the patient popu-
lation mean is lower than the control but only
minimally); the patient population would still
contain very many scores that exceed those of the

Figure 4. Control and patient distributions in which there is a

common mean but different standard deviations (note that a

common mean is essential for Type I errors to be an issue).
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control population. Thus, it is hard to envisage a
situation in which neurological damage has
caused a patient’s performance to become mark-
edly more variable than controls without also
markedly lowering the overall level of perform-
ance. This is mainly because it cannot be expected
that following neurological damage, patients will
routinely obtain scores on a cognitive task that
exceed their premorbid scores. As a result, any
increased variability will occur below the ceiling
imposed by the limits of their premorbid ability,
and it is then necessarily the case that their
average postmorbid level of performance will be
well below their premorbid level.

Unreliability of the performance of single cases and
increased variability of a patient population
In the present power study the effect of increased
unreliability in the performance of single cases
has been examined. It should be stressed that
this study can equally readily be conceived as a
study of the effects on power of increased variabil-
ity in a notional patient population. That is,
Mycroft et al. (2002) were concerned with Type
I errors when the variability of a patient population
was larger than a control population, and the
present study can be seen as extending this to
study power under these circumstances.

One difference, however, is that we have not
modelled situations in which the increase in varia-
bility for patients is as extreme as the scenarios
examined by Mycroft et al. (2002) in their study
of Type I errors. As noted, Mycroft et al. examined
scenarios in which the standard deviation of
patients was up to five times that of controls
(and provided modified critical value of F for use
by researchers to cover this scenario). However,
if we translate this increased variability into
reliabilities it stretches credibility. For example, if
the reliability of scores for controls was .85, then
the reliability of scores for patients would have to
be vanishingly low (.034) in order to produce a
situation in which the standard deviation of

observed scores was 5 times that of the observed
scores for controls. Even if we leave aside this
issue, the scenario can be seen to be unrealistic
on grounds similar to those advanced above
when considering Type I errors. That is, even
when a case has a large deficit, if their scores
were more variable than controls by a factor of
five, their obtained scores would frequently
exceed their premorbid scores or those of
matched controls by a very large amount.

An ultraconservative model of single-case research?
To summarize the empirical findings thus far:
Although power to detect a large deficit for
Crawford and Howell’s (1998) method is at best
moderate, this method has vastly greater power
to detect a deficit than Mycroft et al.’s (2002)
method in all scenarios examined: that is, when
the control population is normal, when it departs
from normality, in the absence of random
measurement error, when error is present in
equal measure for controls and the single case,
and when error is greater for the single case (as
noted, this latter scenario can also be conceived
of in Mycroft et al.’s terms as an increase in the
variability of the patient population).

Although single-case researchers will be rightly
concerned that the use of Mycroft et al.’s (2002)
method will result in a failure to detect many def-
icits that are of importance for cognitive theory,2

observers of the single-case enterprise may be
more sanguine. That is, they may take the position
that very rigorous standards of proof should be
applied in single-case research, and if that means
that many interesting deficits will be missed,
then so be it. In other words, it might be argued
that avoidance of Type I errors should be para-
mount; single-case researchers should err strongly
on the side of being conservative when interpret-
ing their data.

It is certainly true that, if Mycroft et al.’s (2002)
method yielded a significant result, we could be
very confident that the patient truly has a deficit

2 Note that potentially important deficits will also be missed when Crawford and Howell’s (1998) method is used but power is

particularly low for Mycroft et al.’s (2002) method.
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(i.e., the critical values employed make their
method very conservative). However, there are at
least two reasons why an appeal to conservatism
is unsatisfactory.

First, if there is concern over standards of proof,
then a decision to toughen standards should be
implemented through more conventional means.
That is, with Crawford and Howell’s (1998)
method it is very easy to reduce the Type I error
rate simply by adopting a more conservative value
of alpha (e.g., one could require that the difference
between a patient and controls was significant at
the .01 level rather than the .05 level). This
approach has the major advantage that researchers
would know that having opted for a Type I error
rate they regard as acceptable, this is the error
rate that will apply when the test is used in practice
(subject to the proviso that the assumption of nor-
mality is not violated; as noted, both methods
make this assumption). That is, we know from
theory and from Crawford and Garthwaite’s
(2005b) simulation study that the observed Type
I error rates for Crawford and Howell’s method
will match the specified error rates.

Moreover, such a strategy does not require that
researchers attempt to estimate the variance of a
notional patient population in order to select a
critical value (there is also the prospect that one
researcher’s guess at this variance will differ radi-
cally from that of another such that if they
applied Mycroft et al.’s, 2002, method to the
same dataset, they would arrive at radically differ-
ent conclusions).

It should be stressed that we are not advocating
that researchers should adopt a more stringent
value of alpha. The present results demonstrate
that power will not be high, even for Crawford
and Howell’s (1998) method, unless the deficit
to be detected is very large. Therefore, use of the
conventional .05 level (one-tailed) will generally
strike a reasonable balance between controlling
Type I and Type II errors.

There is a second reason why an appeal to con-
servatism should be regarded with scepticism.
Because of the nature of many of the questions
posed in single-case studies, methods that are
apparently conservative may, paradoxically, lead

researchers to claim erroneous support for their
hypotheses. This possibility, which also has
broader implications for single-case research, is
explored in Study 5.

STUDY 5: TYPE I ERRORS FOR
CLASSICAL DISSOCIATIONS IN
SINGLE-CASE STUDIES

Although identifying deficits is a fundamental
feature of single-case studies, such deficits are nor-
mally of limited theoretical interest unless they are
accompanied by performance in the normal range
on other tasks. That is, much of the focus in
single-case studies is on establishing dissociations
of function (Caramazza & McCloskey, 1988;
Coltheart, 2001; Crawford et al., 2003; Ellis &
Young, 1996; Shallice, 1988).

A classical dissociation (Shallice, 1988, p. 227)
is conventionally defined as occurring when, with
reference to the performance of matched healthy
controls (or a healthy normative sample), a
patient is “impaired” or shows a “deficit” on task
X but is “not impaired”, “normal”, or “within
normal limits” on task Y. For example, Ellis and
Young (1996) state, “If patient X is impaired on
task 1 but performs normally on task 2, then we
may claim to have a dissociation between tasks”
(p. 5). Similarly, Coltheart (2001) states that a clas-
sical dissociation is established when a patient “is
impaired on task X but normal on task Y” (p. 12).

In practice, when the research design is one in
which a patient is compared to matched controls,
the patient is considered to have met these conven-
tional criteria for a classical dissociation if her/his
performance is significantly different from that of
controls on task X but is not significantly different
on task Y. The danger here is that if a method with
low power is used to test whether these criteria are
met, then a patient with a genuine deficit on task Y
will not differ significantly from controls. Thus a
spurious classical dissociation will be recorded.
Ironically then, low power to detect a deficit (i.e.,
a high Type II error rate) can lead to a high
Type I error rate (i.e., falsely concluding that a
case has a classical dissociation).
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The final simulation study is designed to subject
the above argument to empirical scrutiny. That is,
although such paradoxical effects are clearly poss-
ible in theory, it is important to examine the
extent to which they are liable to pose a threat in
practice. To study this we adopt a procedure devel-
oped by Crawford and Garthwaite (2005a) to
model cases that have a strictly equivalent level of
acquired impairment on both tasks of interest (X
and Y) and to record the number misclassified as
exhibiting a classical dissociation.

We use Mycroft et al.’s (2002) method to test
whether the conventional criteria for a classical
dissociation are met (i.e., a significant difference
between the case and controls on either task X or
task Y but not both), and we compare the results
with those obtained when Crawford and
Howell’s (1998) method is used for the same
purpose. In addition, we compare both sets of
results to those obtained when an alternative set
of criteria (Crawford & Garthwaite, 2005b) for a
classical dissociation is applied. These criteria,
which stem from a critique of the conventional cri-
teria made by Crawford et al. (2003), incorporate a
test on the standardized difference between the
patient’s X and Y scores. That is, the conventional
criteria are supplemented with a requirement that
the difference between the patient’s scores signifi-
cantly exceed the differences observed for controls.
(This additional criterion specifies that it is the
standardized differences that should be compared
because, typically, tasks X and Y will differ in
their means and standard deviations.) The test
on the standardized difference is achieved using
the Revised Standardized Difference Test
(RSDT; Crawford & Garthwaite, 2005b;
Garthwaite & Crawford, 2004).3

Method

As in previous studies, the simulation was
implemented in Delphi. However, for each

control and the single case there is now a pair of
scores, and so sampling is from a bivariate normal
distribution. Also, an additional factor needs to be
added to the design in order to study performance
of the inferential methods at different magnitudes
of the population correlation between X and Y.

A total of 1,000,000 samples of n þ 1 pairs
of observations were drawn from each of
four bivariate standard normal distributions in
which the population correlation (r) was set at
.0, .2, .5, and .8. As in the previous simulations,
this was done for five values of n: 5, 10, 20, 50,
and 100.

The first n pairs of observations were taken as
the control sample’s scores on X and Y and the (n
þ 1)th pair taken as the scores of the single case.
The single case was then “lesioned” by imposing
an acquired impairment of 3 SDs on both X
and Y. As the observations are sampled from a
standard normal bivariate distribution, the stan-
dard deviation is 1.0 for both X and Y, and there-
fore this required simply that 3.0 was subtracted
from the case’s X and Y scores. These cases are
used to represent patients who have suffered
very large, but strictly equivalent, deficits on X
and Y; that is, they do not exhibit a classical dis-
sociation. Note that 3-SD deficits were applied in
this simulation rather than the 2-SD deficits
applied in Crawford and Garthwaite’s (2005a)
previous work on dissociations. This was done
because it is clear from the foregoing power
studies that Mycroft et al.’s (2002) method will
only be capable of identifying deficits if they are
very large; for the same reason only the inter-
mediate version of Mycroft et al.’s method is
examined.

The simulation procedure is designed to
model patients with equivalent acquired deficits:
It does not produce cases with scores that are
simply 3 SDs below the control mean on X and
Y, nor does it produce cases with equivalent
scores on X and Y. Rather, the method

3 Obtaining a sound inferential method of examining the difference between an individual’s standardized scores has proved to be

much more difficult than might be anticipated as the problem is one of testing for a difference between two t variates. The RSDT was

developed using asymptotic expansion methods and, unlike previously available methods, achieves control of the Type I error rate

across all values of the control sample n and the correlation between tasks.
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recognizes that (a) patients are initially members
of the healthy control population until the onset
of their lesion, (b) there will be premorbid differ-
ences in competencies on X and Y, and (c) the
magnitude of premorbid differences between X
and Y will be a function of the population corre-
lation between the two tasks (i.e., the magnitude
of such differences will, on average, be smaller
when the population correlation is high than
when it is low).

On each Monte Carlo trial, Mycroft et al.’s
(2002) method, in its intermediate form, was
applied to test whether the conventional criteria
for a classical dissociation were met—that is, a
significant difference in favour of controls on
either task X or task Y but not on both. This
was then repeated substituting Crawford and
Howell’s (1998) method as the means of test-
ing whether the criteria were met. Finally,
Crawford and Garthwaite’s (2005b) set of criteria
was applied. This required a significant differ-
ence, using Crawford and Howell’s method,
between the single case and controls on either
X or Y, but not both, and also required that the
standardized difference between the case’s X and
Y scores was significantly larger than the standar-
dized differences of the controls (p , .05,
two-tailed).

Results and discussion

Full results from the simulation are presented in
Table 6. However, the pattern of results is more
readily appreciated by referring to Figures 5 and
6. Figure 5 plots Type I errors as a function of
the control sample size and the criteria applied;
the results are those for an intermediate population
correlation of .5 between tasks X and Y.

It can be seen that when Mycroft et al.’s
(2002) method is used to test whether the con-
ventional criteria are met, large percentages of
the cases with strictly equivalent deficits on X
and Y are misclassified as exhibiting a classical
dissociation. The minimum Type I error rate
was 20.69% (for a control sample n of 100 and
population correlation between X and Y of .8),
and this rose to a maximum of 49.33% for a

control sample size of 100 and correlation of 0;
that is, up to half of all cases with strictly equival-
ent deficits are liable to be wrongly classified as
exhibiting a classical dissociation. It can also be
seen that the Type I error rate is relatively
unaffected by the control sample size; that is,
larger control samples do not protect against
misclassifications.

It can be seen from Table 6 and Figure 5 that
when Crawford and Howell’s (1998) method is
used to test whether the conventional criteria are
met, the percentage of cases misclassified as exhi-
biting a dissociation are, in general, much lower
than those observed for Mycroft et al.’s (2002)
method. It can also be seen that, unlike Mycroft
et al.’s method, larger control sample sizes
protect against misclassifications; for example, in
the case of a correlation between X and Y of .5,
misclassification rate falls from 29.74% for a n of
5 to 12.79% for a n of 100.

Although the use of Crawford and Howell’s
(1998) method to test whether the conventional
criteria are met leads to lower rates of misclassifi-
cation, it can be seen that these rates are neverthe-
less still uncomfortably high. The final columns of
Table 6 present the percentage of cases misclassi-
fied when Crawford and Garthwaite’s (2005b)
criteria are applied (see also Figure 5). In contrast
to the foregoing results, it can be seen that mis-
classification rates are low in all of the scenarios
examined; the rates range from a maximum of
6.66% for a control sample n of 5 and a corre-
lation between tasks of zero to a minimum of
1.32% for a n of 100 and correlation of 0.8.
(Note that these criteria are based on the appli-
cation of three statistical tests and function as
a set of hurdles; therefore, unlike the results
for an individual test statistic, it should not be
expected that the misclassification rates will be
at or around 5%.)

It can also be seen from Table 6 and Figure 6
that the percentage of cases misclassified as exhi-
biting a classical dissociation declines for all
three methods as the population correlation
between X and Y increases. This is encouraging
because, as Shallice (1979) notes, in practice
much of the search for dissociations is focused
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on tasks that are at least moderately and even
highly correlated in the general population (i.e.,
tasks for which there is a prima facie case that
they tap a unitary function and therefore may
not be dissociable). However, the rates are still
high in absolute terms, except with Crawford
and Garthwaite’s (2005b) criteria, and this is the
case even when the correlation between tasks is
substantial.

These results illustrate the virtues of incorpor-
ating a test on the difference between a patient’s

X and Y scores when testing for a classical dis-
sociation. That is, we suggest that the conven-
tional criteria for a classical dissociation are
fundamentally unsatisfactory because one half of
the criteria relies on failing to find evidence of a
deficit. The present results for Mycroft et al.’s
(2002) method provide a particularly vivid demon-
stration of this problem (because of the low power
of the method to detect deficits). However, it

Table 6. Type I errors for a classical dissociation as a function of control sample size, correlation between tasks (rxy), and criteria employed

rxy

Mycroft et al. (2005): Intermediate Conventional criteria using t

Crawford and Garthwaite (2005b)

criteria

n 0 .3 .5 .7 .8 0 .3 .5 .7 .8 0 .3 .5 .7 .8

5 38.20 34.99 31.37 25.72 21.66 39.66 34.55 29.74 23.46 19.28 6.66 6.43 5.79 4.67 3.85

10 45.25 39.28 33.87 26.75 22.01 26.95 23.39 20.16 15.81 13.05 4.82 4.27 3.71 2.86 2.35

20 48.00 40.35 34.12 26.41 21.55 21.03 18.35 15.83 12.47 10.28 3.96 3.37 2.81 2.14 1.72

50 49.02 40.23 33.62 25.71 20.92 17.94 15.68 13.59 10.69 8.77 3.57 2.86 2.36 1.76 1.41

100 49.33 40.16 33.44 25.54 20.69 16.96 14.82 12.79 10.11 8.34 3.40 2.70 2.19 1.65 1.32

Note: rxy ¼ correlation between tasks.

Figure 5. Type I errors for a classical dissociation as a function of

control sample size and criteria applied ( for these data rxy ¼ .5).

Figure 6. Type I errors for a classical dissociation as a function of

criteria applied and correlation between tasks (based on a n of 20

for the control sample).
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remains a problem regardless of the method used
to test the conventional criteria because low or
moderate power to detect deficits is an inherent
feature of single-case studies.

As Crawford and Garthwaite (2005b) note, the
additional requirement of a significant difference
between the patient’s X and Y scores provides a
positive test for a classical dissociation rather
than having to rely on failing to find evidence for
a deficit on one of the tasks. When this additional
criterion is imposed it is unlikely that a patient
with equally severe acquired deficits will be
misclassified unless she/he had an unusually large
premorbid difference on the abilities measured
by the two tasks.

GENERAL DISCUSSION

The present investigation was originally motivated
by a simple question: Of two methods of testing
for a deficit in single-case research, which should
be preferred? The results obtained provide an
unequivocal answer to this question but they also
have broader implications for single-case research.
To our knowledge, this is the first study to conduct
an empirical examination of the power to detect a
deficit in single-case studies. Although the results
demonstrate that power will be particularly low for
Mycroft et al.’s (2002) method, they also serve to
demonstrate that low-to-moderate power will be
an inherent feature unless the deficits to be
detected are extremely large.

A commonly used alternative to the methods
of Crawford and Howell (1998) and Mycroft
et al. (2002) is to express the patient’s score as
a z score and refer it to a table of areas under
the normal curve; for example, the patient’s
score is considered to be significantly lower
than that of controls (p , .05, one-tailed) if z
falls below –1.645. This method will identify
more patients with true deficits than will either
of the foregoing methods (particularly when the
control sample size is small) but power will still
be only moderate even for large deficits.
Moreover, this increase in power occurs at the
expense of inflation of the Type I error rate.

For example, with a specified error rate of 5%,
Crawford and Garthwaite (2005b) reported
observed error rates for z as high as 10.37%
with control sample sizes typical of those used
in single-case studies (z was not included in the
present study for this reason; i.e., the power of
a method can only be meaningfully interpreted
when the Type I error rate is close to the
nominal level or more conservative).

The present study has also demonstrated that
researchers cannot be sanguine about the fact
that power will tend to be low to moderate in
single-case studies. Low power not only increases
the likelihood that researchers will fail to gain
support for their hypotheses (or fail to detect unex-
pected but interesting deficits), but may also
produce spurious support for hypotheses that
specify that a deficit occurs in the context of unim-
paired performance on other tasks. As noted, a
positive test for a classical dissociation (i.e., a test
on the difference between tasks) is required to
avoid reliance on a null result. Although power
to detect a classical dissociation will be at best
moderate when this additional criterion is
applied (Crawford & Garthwaite, 2005a), it has
the virtue that it will markedly reduce the
number of false positives.

The effects of measurement error on power to
detect deficits also yielded results that are of
broad interest. Measurement error, when present
in equal measure for controls and the single case,
will reduce the power to detect a deficit.
However, if task reliabilities are moderate to
high (i.e., � .70) the effects are relatively
modest. More importantly perhaps, when a
patient score is subject to greater error than that
of controls, power will be broadly comparable to
that achievable in the absence of such a differen-
tial, unless power deviates markedly from 50% in
the latter case. For Crawford and Howell’s
(1998) method (and for z, although we do not rec-
ommend this test for the reasons outlined above)
power to detect a large deficit will typically be in
the range of 40 to 60%. Thus it appears that differ-
ential measurement error does not pose a serious
threat to the validity of inferences drawn in
single-case studies given that we can also discount
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the possibility that its presence will inflate the
Type I error rate.

Finally, Monte Carlo methods offer a means of
examining methodological issues in single-case
research that would be difficult or impossible to
address by other means; it is to be hoped that
the present study will encourage further use of
such methods.
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APPENDIX A

A proof that, for Crawford and Howell’s
(1998) method, the estimated proportion of
controls who have a lower score than a case
equals the significance level of the one-tailed
test

The proportion of controls who have a lower score than x�, the

score for a case, is

Pr(x , x�) (A:1)

Adding �x to both sides and dividing them by the same thing,

Pr(x , x�) ¼ Pr
x� �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
x ((nþ 1)=n)

p ,
x� � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
x ((nþ 1)=n)

p
 !

: (A:2)

Now

x� �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x ((nþ 1)=n)

p
has a t distribution on (n 2 1) df, so that

Pr(x , x�) ¼ Pr tn�1 ,
x� � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
x ((nþ 1)=n)

p
 !

: (A:3)

Also, the test statistic for testing whether x� is from the same

normal distribution as the control x’s, is

x� � �xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
x ((nþ 1)=n)

p (A:4)

and this is compared with a t distribution on (n 2 1) df.

Comparison of Equations A.3 and A.4 shows that Pr(x , x�)

is equal to the significance level for the one-tailed test.

APPENDIX B

Sampling from skew-normal and skew-t
distributions

The methods used to sample from skew-normal and skew-t dis-

tributions were based on work by Azzalini and colleagues

(Azzalini & Capitanio, 1999; Azzalini & Dalla Valle, 1996).

The starting point for sampling from skew-normal distri-

butions is the generation of two independent standard normal

variates u0 and u1 (u1 is used to form the X observations, and

u0 is used to control the degree of skew in X). Then u2 is deter-

mined from the formula

u2 ¼ r2
u0u1
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

u0u1

q
u1 (A:5)

The value of ru0u1
required to introduce the desired degree of

skew (g1) can be obtained by algebraic manipulation of

Azzalini and Dalla Valle’s (1996) formulae for g1 to solve for

ru0u1
. That is, put

a ¼
2g1

4� p

� �1=3

(A:6)

and

ru0u1
¼ a

p

2þ 2a2

� �1=2

: (A:7)

Then

x ¼
u2 if u0 � 0
�u2 otherwise

�
(A:8)

is an observation from the skew-normal distribution with skew-

ness g1. To sample from the equivalent skew-t distribution the

above steps are followed by dividing x by
p

(x2/n), where x2 is a

random draw from a chi-square distribution on n df (e.g., n¼ 4

if severe leptokurtosis is required).

APPENDIX C

Formulae for power calculations for
Crawford and Howell’s (1998) test and the
test of Mycroft et al. (2002)

Crawford and Howell’s (1998) test
When the population variance is 1, and the reliability is rxx,

then the variance of an observed score is 1/rxx. If the case has

a deficit of h, then the power of the test of Crawford and

Howell is

Pr(�x� x�=(s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=n

p
) . tn�1;a), (A:10)

where

�x� x� � N h,
nþ 1

nrxx

� �
:

Now rxx(n 2 1)s2 has a chi-squared distribution on (n 2 1) df,

where s2 is the sample variance of the controls. Hence, tn 2 1(d)

¼ (�x 2 x�)/fs
p

[(n þ 1)/n]g has a noncentral t distribution on

(n 2 1) df with noncentrality parameter d, where d¼ h
p

[rxxn/
(n þ 1)]. (See, for example, Owen, 1968.) To obtain h�, the
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minimal value of h for which the power is 0.8, we first find d�

such that Pr(tn – 1(d�) . tn – 1;a) ¼ 0.8. Then the probability in

Equation A.10 also equals 0.8, so we put h� ¼ d�
p

[(n þ 1)/
rxxn].

The test of Mycroft et al. (2002)
The critical values for the test of Mycroft et al. (2002) were

determined by simulation in their original paper. To gain

understanding, we first derive critical values using distribution

theory. The premise for the test is that the variance for a

control is some unknown value, f say, while the variance for

the case is kf, where k is known. We assume, for the

moment, that there is no measurement error. Then, under

the null hypothesis that the case comes from some population

whose mean equals the mean of the controls’ population,

�x� x� � N (0,(kþ 1=n)):

Also, (n 2 1)s2/f has a chi-squared distribution on (n 2 1)

df, so (�x 2 x�)/fs
p

[k þ (1/n)]g follows a t distribution on (n

2 1) df. Hence, for the two-tailed test of Mycroft et al., the null

hypothesis is rejected if

�x� x�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1=n
p

����
���� . tn�1;a=2:

Equivalently, we could use a different test statistic and reject the

null hypothesis if

�x� x�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ 1)=n

p
�����

����� . tn�1;a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
knþ 1

nþ 1

r
:

A further equivalent alternative is to reject the null hypothesis if

�x� x�

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþ 1)=n

p
 !2

.
knþ 1

nþ 1

� �
F1,n�1;a=2,

where F1,n – 1;a/2 is the (1 2 a/2) quantile of an F distribution

on 1 and (n 2 1) df. This last alternative is the test described

in Mycroft et al. Their test statistic, obtained through

an ANOVA, equates to [(x̄ 2 x�)/fs
p

[(n þ 1)/n]g]2,

and the critical values given in Table 2 of that paper are

equal to f(kn þ 1)/(n þ 1)gF1,n 2 1;a/2. (Slight differences

arise, however, because the figures given in Mycroft et al.

are affected by Monte Carlo variation and hence are approxi-

mate. For that paper’s notation, k must be replaced by s2.)

For power calculations, it is simplest to choose (�x 2 x�)/

fs
p

[(n þ 1)/n]g as the test statistic, since tn – 1(d) ¼

(�x 2 x�)/fs
p

[(n þ 1)/n]g has a noncentral t distribution.

Its noncentrality parameter is d ¼ h
p

[rxxn/(n þ 1)], the dis-

tribution has (n 2 1) df, and, when the reliability is rxx, its

noncentrality parameter is d ¼ h
p

[rxxn/(n þ 1)]. The test is

two-tailed and the test statistic is tn – 1;a/2

p
[(kn þ 1)/

(n þ 1)], so we find d# for which

Pr tn�1(d#) .

ffiffiffiffiffiffiffiffiffiffiffiffiffi
knþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p tn�1,a=2

� �

þ Pr tn�1(d#) , �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
knþ 1
p ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p tn�1,a=2

� �
¼ 0:8:

Then, h#¼ d#p[(n þ 1)/(rxxn)] is the minimal deficit that the

test of Mycroft et al. detects with a power of 0.8.
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