
Completeness Conditions for Mixed
Strategy Bidirectional Parsing

Graeme Ritchie∗

University of Edinburgh

It has been suggested that, in certain circumstances, it might be useful for a grammar-
writer to annotate which rules are to be used bottom-up and which are to be used top-down
within a parser, using a bidirectional variant of the active chart parsing technique. The
formal properties of such systems have not been fully explored. One limitation of this
mixed strategy technique is that certain annotations of rules can lead to incompleteness;
that is, there may be valid analyses of the input string which cannot be found by the parser.
We formalise a fairly natural notion of mixed strategy bidirectional parsing for context free
grammars, in which one or more symbols within a rule may be annotated as “triggers.” so
that the rule is either top-down (triggered from its left-hand side), or bottom-up (triggered
from element(s) of its right-hand side). We define a decidable property of annotated
grammars, such that any grammar with this property is provably complete. There are,
however, some complete annotations of grammars which fall outside this decidable class.
We show that membership of this wider class is undecidable. These results suggest that
the mixed strategy approach is of rather limited usefulness, regardless of whether it is
empirically efficient or not.

∗ Division of Informatics, 80 South Bridge, Edinburgh EH1 1HN, Scotland.

c© 1999 Association for Computational Linguistics

Computational Linguistics Volume 25, Number 4

1 Overview

Many methods have been explored for parsing context free grammars; some of these
methods are loosely categorised as “top-down” (e.g. recursive descent), some as “bottom-
up” (e.g. shift-reduce), and some could be seen as a mixture of these two varieties (e.g. left
corner). All of the well-explored methods assume that the rules in the grammar are
handled in a fairly uniform way. In particular, it is not usual for the rules to be separated
into two classes – those to be used bottom-up and those to be used top-down. Steel
and de Roeck (1987) argue (giving credit to Henry Thompson for some of the ideas)
that the performance of a parser could be improved by allowing the grammar writer to
do exactly this. The motivation comes from linguistic phenomena where it is intuitively
clear that one symbol (linguistic category) in the rule is noticeably more distinctive than
others, so that a parser should not waste time trying to match the rule unless that
distinctive element is there. For example, a rule such as NP → NP CONJ NP (where
CONJ indicates a conjunction such as and) should not be invoked simply because a noun
phrase (NP), or the start of a noun phrase, has been found. The proposal is that if the
linguist is allowed to mark the CONJ element as a “trigger,” and the parser introduces
the rule, bottom-up, only if the trigger has been matched, then parsing would proceed
more efficiently.

Steel and de Roeck describe semi-formally a system they have implemented which
they claim benefits from this labelling of rules. The current paper does not take a po-
sition on the wisdom or effectiveness of such labelling. Instead, we explore the formal
consequences of this proposal. We show that, although the idea may seem superficially
plausible, it still has certain formal limitations in the area of completeness and decidab-
ility. The proofs may be of some theoretical interest from a formal language viewpoint.

The central ideas are as follows. A conventional context free grammar is “ annotated”
by marking at least one symbol in each rule as a “trigger.” Marking the left-hand side
(LHS) symbol as a trigger indicates that the rule can be used top-down; marking a
right-hand side (RHS) symbol as a trigger means that the rule can be used bottom-
up whenever a constituent labelled with that symbol is found by the parser.1 Using a
method of parsing known as active chart parsing, it is straightforward to give a precise
meaning to this labelling of rules, since a chart parser can operate either bottom-up or
top-down. The scheme examined here is similar to, but different in important ways, from
head-driven parsing (see Section 7.2).

It is simple to construct an annotated grammar in which there are some analyses
which are valid according to the original (unannotated) grammar but which would not be
parsed by a chart parser following the annotations. This establishes that not all annotated
grammars allow complete parsing.

The main substance of this paper is as follows. A property of annotated grammars
(direct analysability) is defined, which is decidable, and it is proven that any annotated
grammar with this property will also allow the parser to produce all the valid analyses
licensed by the original grammar. However, there are some annotated grammars which are
not directly analysable, but which nevertheless lead to complete parsing. A characteristic
of (a subset of) this wider class of annotated grammars (indirect analysability) is

1 The term “bottom-up” is adopted here for compatibiity with some other literature on chart parsing,
and for lack of a better simple phrase. In fact, there are various possible parsing regimes which are
in some sense “bottom-up,” and it is arguable that some are “more bottom-up” than those outlined
here. Where right-hand side triggers are restricted to the leftmost symbol (as in Section 5 below),
parsing is more like “left-corner” parsing, but this would be a misleading term when triggers are
allowed elsewhere.

2

Ritchie Completeness of Mixed Strategy Parsing

defined, and it is proven that any annotated grammar with this property will allow
complete parsing. However, indirect analysability can be shown to be undecidable.

2 The problems

2.1 Losing completeness
Before presenting a formal definition of the mechanisms, and proceeding to prove their
various properties, it is useful to consider informally a very simple example which shows
how this approach can lead to loss of analyses by the parser. As outlined above, the
central idea is to allow different rules to be marked as either top-down (LHS trigger
symbol) or bottom-up (RHS trigger symbol(s)), or both. “Top-down” means that the
rule can be invoked only if some other rule has established a need for its LHS symbol (or
if the LHS symbol is the initial symbol of the grammar). “Bottom-up” means that the
rule can be invoked only if one of the symbols marked as triggers on its RHS has been
completely parsed. We shall assume that rules of the form A→ w where w is a terminal
symbol are never annotated, and can be used whenever needed in the parser (all this is
made precise in our formalisation in Section 3.3 below).

For this informal presentation, and occasionally elsewhere, we shall mark a trigger
symbol A by overlining it, thus: A. In the illustrative examples, the distinguished (initial)
symbol of the grammar will always be “S” and terminal symbols will be in lower case.

Consider the annotated grammar (see Section 3 for a definition of grammar):

S → NP V P
NP → Art N
V P → runs
Art→ the
N → dog

It should be intuitively clear that although this grammar generates exactly one sentence,
that string cannot be parsed by a parser which follows the annotations as described.
The rule S → NP V P cannot be used until an initial NP is recognised, and the rule
which might do that, NP → Art N , cannot be used until an initial need for an NP is
established (which could happen only using S → NP V P). There is a form of deadlock,
resulting in incompleteness. It should also be intuitively clear that the presence or absence
of such combinations of annotations may not be as obvious as it is here. In a grammar
with hundreds of rules, the presence of a combination which blocks an otherwise valid
analysis could take some detailed checking. This is a serious flaw, as the annotation
method was supposed to alter the efficiency of the parser, but not to eliminate strings
from its language.

It would be very easy to ensure that annotation does not lose analyses, by stipulating
that all rules are marked as top-down, or that all rules are marked as bottom-up with
the leftmost symbol as a trigger. The parser would then behave as a conventional top-
down (or bottom-up) chart parser, which is known to be complete. However, since the
aim is to allow the grammar-writer to make a non-trivial annotation of the grammar (in
an attempt to allow linguistic knowledge to influence the efficiency of the parsing), we
need to be able to check the completeness of arbitrarily annotated grammars. In Section
4 below, we define formally a non-trivial characteristic of annotated grammars which
guarantees that they do not lose analyses in this way, and show that this property of
grammars is decidable.

3

Computational Linguistics Volume 25, Number 4

2.2 Completeness through interactions
The situation is even more complicated than Section 2.1 above indicates. One of the
crucial aspects of chart parsing (which is central to its simplicity and its efficiency) is that
any entry in a chart can be used to combine with any other compatible entry, regardless
of whether there is a single coherent tree which will result from it. In particular, an entry
which has been inserted in the chart as the result of some rule interaction which does
not itself produce a complete sentential tree (i.e. a partial fragment of an analysis) can
contribute to some other analysis that happens to require it.

This is best demonstrated by a simple artificial example. Consider the strategy-
marked grammar, notation as before:

S → E H
H → B F
B → P Q
E → j
P → l
Q→ m
F → k

The unstrategy-marked version of this grammar would generate the string jlmk, with a
derivation as follows (see Section 3 for a definition of the relation “⇒”):

S ⇒ EH ⇒ jH ⇒ jBF ⇒ jPQF ⇒ jlQF ⇒ jlmF ⇒ jlmk

The tree described by this derivation cannot be found by a parser following the strategy-
marked grammar, for reasons similar to those outlined in Section 2.1 above. Suppose we
now add the following rules to the grammar:

S → C D
D→ E A
A→ B C
C → x

This larger grammar will also generate the string xjlmx, but this is not relevant to the
argument. What is more interesting is that the extended grammar does now allow the
parsing of jlmk, with an associated syntax tree which corresponds to the derivation given
above (i.e. a tree which makes no direct use of the rules which have been added to the
grammar). The way in which the added rules act as a “catalyst” to allow the hitherto
blocked analysis is an example of a general phenomenon. Informally, what happens is
the following. (A chart parser is assumed here; formal details are given in Section 3.3
below.) With just the smaller grammar, the non-terminal H cannot be expanded as
required, since it is on the LHS of a bottom-up rule, and its first symbol B cannot be
recognised because it requires a top-down rule. In both the original grammar and the
larger grammar, H is introduced only by the rule S → E H, i.e. with E on its immediate
left. So the only strings where H can participate in an analysis are those where E occurs
at the start. Consider the parsing, with the larger grammar, of the string jlmk (which
does indeed start with an E). As E is pre-terminal, it can be recognised directly (with no
effect from annotations). In the larger grammar, the bottom-up rule D→ E A is then
introduced to the parsing, which creates a predictive entry in the parser’s structures
seeking an A, after the recognised E. The top-down rule A→ B C is then introduced,
which leads to an entry, at that same point, seeking a B. This causes the top-down rule
B → P Q (from the original grammar) to be introduced; this is a crucial step. This allows
the sequence lm to be parsed as a B, thereby causing the introduction of the bottom-up
rule H → B F , and the subsequent success of the parse.

4

Ritchie Completeness of Mixed Strategy Parsing

2.3 What are the problems?
The grammars discussed above (Sections 2.1 and 2.2) are examples of various aspects
of the problem. We shall show that there is a simple, decidable property of annotated
grammars which guarantees completeness, and which could be used to detect the simple
blocking illustrated in Section 2.1. However, this property is merely a sufficient condition
for completeness, as the larger grammar of Section 2.2 above does not possess it, despite
being complete. We shall show that the larger grammar of Section 2.2 has a more general
property, which also guarantees completeness. However, the more general property of
annotated grammars is undecidable.

First, we have to set up the basic formal mechanisms for our definitions.

3 Trees, Grammars and Charts

3.1 Basic concepts and terms
We adopt the standard concepts for syntax trees (see Aho and Ullman (1972, Section 0.5)
or Partee, ter Meulen, and Wall (1990, Ch.16) for possible approaches to formalisation).
A syntax tree is a rooted, ordered, labelled tree. Each node apart from the root has
exactly one mother node, and each non-terminal node has one or more daughter nodes.
A tree is said to span the sequence of labels associated with the sequence of its terminal
nodes (in left-to-right order), and we shall also say that the root node of a (sub)tree
spans its sequence of terminal nodes.

Definition 1: The height of a node in a tree is defined as follows. A terminal node has
height 0; a non-terminal node has height = (1 + maximum height of its daughter nodes).

Definition 2: The depth of a node in a tree is defined as follows. A root node has depth
0; a non-root node has depth = (1 + depth of its parent node).

Following the usual conventions (e.g. Aho and Ullman (1972)), we will take a context
free grammar (CFG) to be a quadruple (VN , VT , P, S), consisting of a set VN of non-
terminal symbols, a set VT of terminal symbols, a set P of rules (productions), and
a single distinguished symbol S ∈ VN . Set theoretically rules can be regarded as being
ordered pairs where the first element is a non-terminal symbol and the second is a tuple
of symbols, i.e. of the form (A0, (A1, . . . , Ak)) where k ≥ 0, but for ease of exposition
they will be written as

A0 → A1 . . . Ak

We will make the following simplifying assumptions (which do not lose generality):

1. Each rule in P is either of the form A0 → A1A2 . . . Ak with k > 0, where all
the symbols Ai ∈ VN , or of the form A→ w where w ∈ VT .

2. The grammar has no redundant symbols, in the sense that no symbols are
“useless” or “inaccessible” as defined by Aho and Ullman (1972, Sect 2.4.2).

Rules of the form A→ w where w ∈ VT will be referred to as lexical rules, and other
rules as non-lexical. A non-terminal A which appears in a lexical rule will be called
pre-terminal, or lexical.

Given a CFG G, a syntax tree based on G is a rooted, ordered tree whose non-
terminal nodes are labelled with elements of VN and whose terminal nodes are labelled
with elements of VT . Those nodes which immediately dominate terminal nodes will be
referred to as pre-terminal; other non-terminal nodes will be referred to as non-lexical.

5

Computational Linguistics Volume 25, Number 4

Where a tree T spans a terminal string a1 . . . an, and M is a node within T which spans
ai . . . ak, the start of M is the index i− 1, and the end of M is the index k.

A syntax tree based on (VN , VT , P, S) is said to be well-formed with respect to
(VN , VT , P, S) if for every non-terminal node with label A0 and daughter nodes labelled
A1, ..., Ak, there is a rule in P of the form A0 → A1,Ak; this rule is said to license the
node labelled A0. For convenience, we shall distinguish between a tree which is compatible
with the rules of the grammar, and a tree which also spans a sentence. A syntax tree is
said to be generated by a grammar G iff:

1. The root node is labelled with S (the distinguished symbol).

2. The tree is well-formed w.r.t. G.

We will write “trees(G)” for the set of all trees generated by G.
The conventional “rewrite” interpretation of CFGs will also be used in some situ-

ations (Section 5 below). Given two strings ω1, ω2 from (VN ∪ VT)∗, then ω1 directly
derives ω2, written “ ω1 ⇒ ω2,” if ω1 = δAγ, ω2 = δαγ and A→ α is a rule in G. Sim-
ilarly, ω1 derives ω2, written “ ω1

∗⇒ ω2,” is the reflexive transitive closure of “directly
derives.” A derivation is a sequence of symbol-strings ω1, . . . , ωn such that ωi ⇒ ωi+1

for all 1 ≤ i < n. A rightmost derivation is one in which each step from ωi to ωi+1 is
made by replacing the furthest right non-terminal symbol in ωi using some rule (i.e. γ
in the above definition of “directly derives” is entirely made up of terminal symbols) (cf.
Aho and Ullman (1972)).

3.2 Annotated Grammars
Since we are allowing trigger elements of a rule to occur anywhere on the RHS of a rule,
it is necessary to allow the parser to explore outwards in either direction (leftwards or
rightwards) from a constituent which has been parsed. Hence the parsing schemes defined
below are referred to as bidirectional, to reflect this fact. This does not allude to the
two “directions” of top-down or bottom-up.

Definition 3: Let G be a context free grammar (VN , VT , P, S). A bidirectional strategy
marking of G is a (total) function tr from the non-lexical rules in P to P(N) (the set
of sets of non-negative integers) such that for any rule r of the form A0 → A1 . . . , Ak:

1. tr(r) 6= ∅

2. 0 ≤ i ≤ k for every i ∈ tr(r)

Informally, tr indicates which element(s) of the rule can “trigger” it. If 0 ∈ tr(r), the
LHS of the rule is a trigger; that is, it can be used top-down. If j ∈ tr(r), where j > 0,
then element j of the RHS can act as a trigger, bottom-up. The value of tr(r) is a set of
integers in order to allow a rule to have more than one possible trigger; in particular, it
is allowable for a rule to be used either top-down or bottom-up.

Definition 4: A bidirectionally strategy-marked context free grammar (BSCFG)
is a pair (G, tr) where G is a CFG and tr is a bidirectional strategy marking of G.

Definition 5: Let ((VN , VT , P, S), tr) be a bidirectionally strategy-marked context free
grammar. Then a rule r ∈ P is said to be:

1. top-down, if 0 ∈ tr(r).

6

Ritchie Completeness of Mixed Strategy Parsing

2. bottom-up, if there is an i > 0 such that i ∈ tr(r).

3. purely bottom-up, if 0 6∈ tr(r).

4. purely top-down if tr(r) = {0}.

3.3 Active charts
The techniques and structures known as “active charts” have been in use for parsing
(at least in the area of natural language processing) since the early 1970s. The method
is a generalisation of Earley’s algorithm (Earley, 1970), and tutorial expositions of the
ideas can be found in Thompson and Ritchie (1984) or Winograd (1983). In keeping with
more recent presentations (e.g. Shieber, Schabes, and Pereira (1995), Sikkel and op den
Akker (1996)) we define the parsing principles as well-formedness conditions on complete
charts, abstracting away from the sequence of steps used to build them.

Definition 6: Given a CFG G of the form (VN , VT , P, S) a double-dotted rule based
on G is a triple (p, l, r) where p is a rule in P of the form A0 → A1 . . . Ak and l, r are
integers such that 0 ≤ l ≤ r ≤ k.

Such a rule will be written as:

A0 → A1 . . . Al •Al+1 . . . Ar •Ar+1 . . . Ak

for ease of exposition and similarity to previous literature. Where either l = 0 or r = k,
the empty portions will be omitted from the expression.

Definition 7: Given a CFG G = (VN , VT , P, S), an edge based on G is a triple (i, j, d)
where i and j are non-negative integers with i ≤ j, and d is a double-dotted rule based
on G.

An edge is said to be lexical or non-lexical according to whether or not the rule
is lexical. An edge of the form (i, j, A0 → A1 . . . Aq−1 •Aq . . . Ap •Ap+1 . . . Ak) where
either q > 1 or p < k (i.e. with a non-empty components at either end) is referred to as
an active edge, and an edge of the form (i, j, A0 → •A1 . . . Ak•) is an inactive edge.
An active edge (i, i, A0 → • •A1 . . . Ak) or (i, i, A0 → A1 . . . Ak • •) is referred to as
an empty active edge. (Sometimes it will be referred to as “an empty active edge for
A0 → A1 . . . Ak.”)

Definition 8: Given a CFG G = (VN , VT , P, S) and a string a1, . . . , an from V ∗T , a chart
based on a1, . . . , an and using G is a set C of edges based on G which meets the
following conditions:

1. for every (i, j, r) ∈ C, i ∈ {0, . . . , n} and j ∈ {0, . . . , n}

2. for ai ∈ VT , (i− 1, i, L→ •ai•) ∈ C iff ai ∈ {a1, a2, . . . , an} and L→ ai ∈ P .

The terminology of the last three definitions will also be used for a BSCFG (G, tr).

Definition 9: Let G be a CFG, and let C be a chart based on a string σ and using G. C
is said to be bidirectionally resolved iff both the following conditions hold:

1. Left Extension: For every pair of edges:

(i, j, A0 → •A1 . . . Am•)
(j, k,B0 → B1 . . . Bq •Bq+1 . . . Bp •Bp+1 . . . Bv)

7

Computational Linguistics Volume 25, Number 4

where p ≤ v, q > 0 and A0 = Bq, there is also an edge:

(i, k, B0 → B1 . . . Bq−1 •Bq . . .Bp •Bp+1 . . . Bv)

2. Right Extension: For every pair of edges:

(i, j, B0 → B1 . . . Bq •Bq+1 . . . Bp •Bp+1 . . .Bv)
(j, k, A0 → •A1 . . . Am•)

where p < v, q ≥ 0 and A0 = Bp+1, there is also an edge:

(i, k, B0 → B1 . . . Bq •Bq+1 . . .Bp+1 •Bp+2 . . . Bv)

Lemma 1
Let C be a bidirectionally resolved chart based on a string σ and using a CFG G, and
suppose that C contains an edge of the form:

(i, j, B0 → B1 . . .Bq •Bq+1 . . . Bp •Bp+1 . . .Bv)

(i) (Rightwards) If C contains edges of the form:

(ip+1, jp+1, Bp+1 → •ωp+1•)
. . .
(ip+t, jp+t, Bp+t → •ωp+t•)

where (p + t) ≤ v, ik+1 = jk where (p + 1) ≤ k < (p + t) and ip+1 = j, then C also
contains an edge of the form:

(i, jp+t, B0 → B1 . . . Bq •Bq+1 . . . Bp+t •Bp+t+1 . . . Bv)

(ii) (Leftwards) If C contains edges of the form:

(i(q−t), j(q−t), B(q−t) → •ω(q−t)•)
. . .
(iq, jq, Bq → •ωq•)

where 0 ≤ t < q, ik+1 = jk where (q − t) ≤ k < q and jq = i, then C also contains an
edge of the form:

(i(q−t), j, B0 → B1 . . . B(q−t−1) •B(q−t) . . . Bp •Bp+1 . . . Bv)

Proof: Both the cases (i) and (ii) proceed by induction on the number of inactive edges.
2

Corollary : If C is as described, and it contains a full set of edges as given at both sides
(i.e. t = (q − 1), so that there are q inactive edges to the left, and (p + t) = v so that
there are (v−p) inactive edges to the right, all with labels matching the rule), then there
is a complete (inactive) edge of the form (i1, jv, B0 → •B1 . . . Bv•) .

A chart parser is driven by two principles: one is that of edge combination, as given
in the above definition of “bidirectionally resolved.” and the other is the introduction of
rules into the chart. For a strategy-marked grammar, the rule-introduction principle is
sensitive to the annotation of the rules.

8

Ritchie Completeness of Mixed Strategy Parsing

Definition 10: Let (G, tr) be a BSCFG, and let C be a chart based on a string σ and
using G. C is said to be bidirectionally mixed strategy explored iff all the following
conditions hold:

1. (Bottom-up activation) For every edge:

(i, j, A0 → •A1 . . . Am•)

there is an edge in C:

(i, j, B0 → B1 . . . Bq−1 •Bq •Bq+1 . . . Bv)

for every rule r in G of the form B0 → B1 . . . Bv such that q ∈ tr(r) and
Bq = A0,

2. (Top-down initialisation) For every rule r in G of the form S → B1 . . .Bk,
where S is the distinguished symbol of G and 0 ∈ tr(r), there is an edge in C of
the form:

(0, 0, S → • •B1 . . . Bk)

3. (Top-down activation, right) For every edge:

(i, j, B0 → B1 . . . Bq •Bq+1 . . . Bp •Bp+1 . . .Bv)

where 0 ≤ p < v, and every rule r in G of the form A0 → A1 . . . Ak for which
Bp+1 = A0 and 0 ∈ tr(r), there is also an edge in C of the form:

(j, j, A0 → • •A1 . . . Ak)

4. (Top-down activation, left) For every edge:

(i, j, B0 → B1 . . . Bq •Bq+1 . . . Bp •Bp+1 . . .Bv)

where 0 < q ≤ v, and every rule r in G of the form A0 → A1 . . . Ak for which
Bq = A0 and 0 ∈ tr(r), there is also an edge in C of the form:

(i, i, A0 → A1 . . .Ak • •)

For brevity, the term fully bidirectional will be used for a chart which is both
bidirectionally resolved and bidirectionally mixed strategy explored.

To explore the issue of completeness (i.e. whether a parsing mechanism finds all valid
analyses) we need to define how the edges in a chart correspond to those in a syntax tree.

Definition 11: A chart C based on a1a2 . . . an is said to contain a representation of a
syntax tree T , iff:

1. T spans a substring (not necessarily proper) of a1a2 . . . an; and

2. for every non-terminal node N in T , spanning ai+1 . . . aj , labelled A0, with k
daughters labelled A1, . . .Ak in order, C contains an edge

(i, j, A0 → •A1 . . .Ak•)

(This includes the case where k = 1 and A1 ∈ VT .)

9

Computational Linguistics Volume 25, Number 4

Notice that for any chart C based on a string σ, C will contain an edge for each
pre-terminal node of any tree which spans σ, by virtue of the definition of a chart being
“based on” a string. Hence later discussions of parsing and completeness can assume the
presence of these edges in the relevant charts, with only the presence of edges for other
non-terminal nodes being subject to verification.

Definition 12: Given a CFG G, a bidirectional strategy-marking tr of G is said to be
complete iff for every tree T ∈ trees(G) which spans a string σ, any fully bidirectional
chart C based on σ and using (G, tr) contains a representation of T .

4 A decidable class of complete annotations

In this section we define a decidable property of annotated grammars which guarantees
that a parser following the annotations will not miss analyses in the manner outlined in
Section 2.1. There is also a weaker (more general) sufficient condition for completeness,
which is defined in Section 5 below, but which is undecidable. The fact that the stronger
condition is decidable makes it worth defining, and some of the proofs in Section 5 make
use of some concepts from the current section.

4.1 Reachability
Another notion which has to be formalised is the way in which a syntax tree can be
parsed from a string of terminal symbols in a purely bottom-up manner.

Definition 13: Let (G, tr) be a BSCFG. In a syntax tree T generated by G, a non-lexical
node M0, with daughters M1, . . . ,Mk, is said to be reachable from below iff M0 is
licensed by a bottom-up rule r and there is a j, 1 ≤ j ≤ k, such that j ∈ tr(r) and one
of the following is true:

1. Mj is a pre-terminal node of T ;

2. Mj is reachable from below.

Definition 14: Let (G, tr) be a BSCFG. A syntax tree T generated by G, is said to be
fully reachable iff every non-lexical node M in T licensed by a purely bottom-up rule
is reachable from below.

4.2 Direct analysability
Now we need to define a property of grammars which will guarantee that generated trees
are fully reachable in the above sense. This can be done in three stages: first, define a
property of non-terminal symbols; then, use that to define a property of grammars; lastly,
prove that any grammar with this property generates only fully reachable trees.

A first approximation to the definition for the property of non-terminals would be
the following:

(*)(Draft definition) Given a BSCFG (G, tr), a non-terminal symbol A0 is
directly analysable iff every rule r of the form A0 → . . . is either lexical, or
of the form A0 → A1 . . . Ak with at least one i ∈ tr(r), i > 0, for which Ai is
directly analysable.

The subsequent definition for grammars is then:

10

Ritchie Completeness of Mixed Strategy Parsing

Definition 15: A BSCFG (G, tr) is directly analysable iff it meets the following con-
dition:

for every purely bottom-up rule r of the form A0 → A1 . . . Ak, there is at least one
i ∈ tr(r), i > 0, for which Ai is directly analysable.

The definition given in (*) captures the essential idea in a fairly natural and clear
way, but it has a slight technical problem. Consider the toy grammar given below:

S → A B
A→ CA
C → x
B → y
A→ z

In this grammar, the non-terminal A is not classed as directly analysable. This is because
there is a cycle from A to itself via trigger symbols in bottom-up rules.2 It would be
equally consistent with the draft definition (*) to state that A is directly analysable, or
to stipulate that it is not directly analysable. There is a sense in which the definition
(*) is underspecified, and gives only partial coverage of the items being classified (non-
terminals). To extend this definition to total coverage, a more elaborate construction
is needed (borrowed from theoretical computer science; cf. (Stoy, 1981, Chapter 6)).3

First, for any BSCFG (G, tr) we define an analysability predicate as any function g
from non-terminal symbols to the set {true, false} which assigns true to a category A0

iff every rule r of the form A0 → . . . is either lexical, or of the form A0 → A1 . . .Ak,
with at least one i ∈ tr(r), i > 0, for which g(Ai) = true. Call the set of all such
functions AP(G, tr). For any two g, h ∈ AP(G, tr), define the relation “v” by h v g
iff h(A) = true ⊃ g(A) = true. This relation is easily shown to be reflexive, transitive
and anti-symmetric, and hence (AP(G, tr),v) forms a partially ordered set (Maclane
and Birkhoff, 1967, p.59),(Stoy, 1981, p.82). Then for any set g1,. . . gn of elements of
AP(G, tr), the function g′ (in AP(G, tr)) given by

g′(A) = true iff either g1(A) = true or . . . gn(A) = true

is a least upper bound (Maclane and Birkhoff, 1967; Stoy, 1981) for g1, . . . gn with
respect to v. Since AP(G, tr) is finite, the presence of a l.u.b. for any subset means it
has a maximum element, which we will call APMAX(G,tr). This predicate APMAX(G,tr)

will assign true to a symbol A if there is some analysability predicate (for (G, tr)) which
makes this assignment.4 Then define a non-terminal A (from G) to be directly analysable
iff APMAX(G,tr)(A) = true. Intuitively, any non-terminal which the draft definition (*)
might leave as undefined with respect to being directly analysable is classed by this new
definition as being directly analysable. Instead of (*) we can now have the following
complete definition.

Definition 16: Given a BSCFG (G, tr), a non-terminal symbolA0 is directly analysable
iff APMAX(G,tr)(A0) = true, where APMAX(G,tr) is as constructed above.

Notice that it follows from the construction of APMAX(G,tr) that A0 is directly ana-
lysable iff every rule r of the formA0 → . . . is either lexical, or of the formA0 → A1 . . .Ak

2 Thanks to Alistair Willis for pointing out this problem.
3 Thanks to Suresh Manandhar for suggesting this approach.
4 Stoy (1981, pp.79-80) illustrates the use of a minimum element from an ordered set of possible

functions, but here we have chosen to use the maximum.

11

Computational Linguistics Volume 25, Number 4

with at least one i ∈ tr(r), i > 0, for which Ai is directly analysable. That is, the state-
ment (*), which was not sufficiently self-contained to be a definition, is now derivable
as a theorem from the more rigorous definition. This means that we can use the logical
equivalence stated in (*) in subsequent proofs.

Lemma 2
Let (G, tr) be a BSCFG which is directly analysable. Let T be a tree in trees(G). Then
T is fully reachable.

Proof: It is straightforward to prove the following preliminary result, using induction on
the height of nodes and the logical equivalence stated in (*) above:

Any node in T which has a directly analysable label is reachable from
below.

It is then easy to show that any node in T which is licensed by a purely bottom-up rule
is reachable from below. 2

4.3 Parsing
Lemma 3
Let (G, tr) be a BSCFG. Let T be a fully reachable tree in trees(G), spanning the string
σ. Let C be a fully bidirectional chart based on σ and using (G, tr). Then for any node
M in T , labelled A:

1. If M is licensed by a purely bottom-up rule, then C contains a
representation of the subtree rooted at M .

2. If M is licensed by a top-down rule, and there is in C an active edge

(t, g, B0 → B1 . . . Bp−1 •Bp . . . Bq−1 •Bq . . . Bv)

where either Bp−1 = A and t is the end of M , or Bq = A and g is the start of
M , then C contains a representation of the subtree rooted at M .

Proof: By induction on the height of nodes.
Inductive Hypothesis: For any 0 < d′ < d, if node M in T is of height d′, the

conditions listed in the lemma hold.
Base Case: Suppose M is of height 1 (i.e. pre-terminal). Then C contains a repres-

entation of the subtree rooted at M , regardless of the antecedent conditions.
Inductive Step: Suppose M is of height d, where d > 1, and is labelled A.
(a) Suppose M , with daughter nodes M1, . . . ,Mk, is licensed by a purely bottom-up

rule A→ A1 . . . Ak. Then, since T is fully reachable, there is a j, 1 ≤ j ≤ k such that
Mj is reachable from below; that is, Mj is either lexical or licensed by a bottom-up rule.
Therefore, by the Inductive Hypothesis, C contains a representation of the subtree
rooted at Mj . Since C is fully bidirectional, it contains an edge spanning Mj of the form:

(l, h, A→ A1 . . . Aj−1 •Aj •Aj+1 . . .Ak)

Now consider the nodes Mi, for j + 1 ≤ i ≤ k. The Inductive Hypothesis applies to
each of these nodes. Hence it can be proved by induction on i that there is a representation
in C of the subtree rooted at Mi for all j + 1 ≤ i ≤ k (cf. Lemma 1). Similarly, it can be
proved that there are representations in C for the subtrees rooted at M1, . . . ,Mj−1. By
the corollary to Lemma 1, there is a representation for the tree rooted at M in C.

(b) Suppose M is licensed by a top-down rule. Suppose there is an edge

12

Ritchie Completeness of Mixed Strategy Parsing

(t, g, B0 → B1 . . . Bp−1 •Bp . . . Bq−1 •Bq . . . Bv)

where Bq = A and g is the start of M (a similar argument holds in the case where
Bp−1 = A and t is the end of M). Since the chart is fully bidirectional, there must also
be an empty active edge

(g, g, A→ • •A1 . . . Ak)

By a similar argument to that in case (a) above, it follows that there are representations
in C for all the nodes M1, . . . ,Mk and thence for M .

This establishes the main induction. 2

Lemma 4
Let (G, tr) be a BSCFG which is directly analysable. Let T be a tree in trees(G), spanning
the string σ. Let C be a fully bidirectional chart based on σ and using (G, tr). Then for
any node M in T , labelled A:

1. If M is licensed by a purely bottom-up rule, then C contains a
representation of the subtree rooted at M .

2. If M is licensed by a top-down rule, and there is in C an active edge

(t, g, B0 → B1 . . . Bp−1 •Bp . . . Bq−1 •Bq . . . Bv)

where either Bp−1 = A and t is the end of M , or Bq = A and g is the start of
M , then C contains a representation of the subtree rooted at M .

Proof: Follows from Lemmas 2 and 3. 2

Being reachable from below can be seen as a condition on nodes which can be built
bottom-up. Surprisingly, we do not need a corresponding condition for nodes which are
built top-down. It is possible to formulate the appropriate condition, but it turns out that
any tree which meets the condition of being fully reachable will also meet the appropriate
condition for top-down nodes. It is hard to give an informal, intuitive explanation for
this, but roughly speaking the reason is as follows. For a top-down rule to be invoked,
it must be used in a position at which some prediction of its LHS symbol A will be
introduced (by some other rule). This can happen either as a cascade of predictions from
above, using a sequence of top-down rules, or because a rule has been introduced and
has caused a sequence of predictions to be made, either left-to-right or right-to-left, as
its RHS symbols are parsed. For either of these to happen, either there must be a clear
path of daughter categories from some other prediction, or A must be on the RHS of
a rule that is somehow introduced. The daughter condition of “reachable from below”
simultaneously imposes these conditions on the top-down rules.

4.4 Completeness
The final step in proving completeness is now simple.

Theorem 1
If a BSCFG (G, tr) is directly analysable, then tr is complete.

13

Computational Linguistics Volume 25, Number 4

Proof: Let T be a tree in trees(G), spanning the string σ, with root node M0 labelled
S (the distinguished symbol of G). Let C be a fully bidirectional chart based on σ and
using (G, tr).

(a) If M0 is licensed by a bottom-up rule, then by Lemma 4, C contains a represent-
ation of the tree rooted at M0.

(b) If M0 is licensed by a top-down rule S → A1, . . . , Ak, then C must contain an
empty active edge of the form:

(0, 0, S → • •A1 . . .Ak)

It follows from repeated applications of Lemma 4 and Lemma 1 (similar to part (b) of the
Inductive Step of Lemma 3) that C contains a representation of the subtrees rooted
at the daughters of M0, and thence of the subtree rooted at M0. 2

Thus we have proved that all BSCFGs which meet the condition of being directly
analysable can be bidirectionally parsed without any valid trees being omitted.

Theorem 2
It is decidable whether a given BSCFG is directly analysable.

Proof: This is straightforward to verify from the definition of “directly analysable”(see
Appendix A for an algorithm). 2

5 An undecidable class of complete annotations

5.1 Informal outline
Before proceeding to formalise the mechanisms underlying the problem presented in
Section 2.2, it is useful to set out informally the relevant factors in that example. A
strategy-marked grammar (G, tr) causes problems only if there is some purely bottom-
up rule of the form A0 → A1 . . . Ak such that every trigger symbol Ai requires a purely
top-down rule somewhere in its expansion (see Section 4.2 above). Such a rule leads to
the possibility of there being a tree T ∈ trees(G) which contains a non-terminal node
which can only be built by a bottom-up rule, and whose trigger daughter can only be
built using a top-down rule. This would give rise to a tree which was not fully reachable.
In the example in Section 2.2 above, the rules

H → B F
B → P Q

create this situation. The “upper” symbol H cannot be parsed because the “lower”
symbol B cannot be parsed. What salvages this difficulty is the fact that the “upper”
non-terminal (H in this example) always occurs in a left context (i.e. a string of symbols
to its left) with the following property. Every possible terminal expansion of the left
context contains a substring which will, via bottom-up rules, introduce rules which are
bound to result in the introduction of an active edge, which starts at the point where
the “upper” symbol (H) is needed and which is seeking the “lower” symbol (B).

The illustrative grammars in Sections 2.1 and 2.2 are of a particular subclass of
grammars – those where tr(r) = {0} or tr(r) = {1} for any (non-lexical) rule r. This
is equivalent to partitioning the rules into two subgroups – top-down and bottom-up
– where the bottom-up rules are always triggered in a left-corner manner, much as in

14

Ritchie Completeness of Mixed Strategy Parsing

conventional “bottom-up” chart parsers (such as those in Thompson and Ritchie (1984)
or Winograd (1983)). That is, there is a natural subclass of annotated grammars which
do not rely on the bidirectional exploration of the chart, but allow this limited form of
mixed strategy left-to-right exploration.

The definitions and proofs of the earlier sections apply to this subclass. It is also
clear, from Section 2.2, that the issue of “completeness by interaction” can be illustrated
within this limited subclass. In the remainder of Section 5 below, it is proved that detect-
ing the possibility of such rule-interactions is undecidable even for this limited subclass
of grammars. It follows that it must be undecidable for the more general class, where
any annotation is permitted. The advantages of focussing on this more limited subclass
are twofold: it shows that restricting the annotations in this way would not ease the un-
decidability problem, and it simplifies the proofs (which are already tediously complex).

Definition 17: A left-corner strategy-marked context free grammar (“LCSCFG”) is
a BSCFG (G, tr) such that tr(r) ⊆ {0, 1} for every rule r in G.

This definition allows a rule to be both bottom-up and top-down marked, rather
than enforcing a strict partitioning. In the following proofs, we will define constructs
for BSCFGs where possible, simply for generality, but where it matters we shall confine
attention to LCSCFGs, thereby narrowing the range of contexts relevant to parsing a
particular symbol.

5.2 Left contexts
Following from the informal discussion in Section 5.1 above, we need to define more pre-
cisely the notion of a “left context” of a symbol. What we want is a way of characterising,
for a given non-terminal A, exactly those strings of symbols which must appear imme-
diately to the left of A in any valid derivation in which A appears. These need not be
all that is to the left of A in a derivation, but it must be the case that A cannot appear
without having one of these left context strings immediately adjacent to it.

In the following definitions, the derivation relationship “ ∗⇒” is the conventional one,
and is independent of any strategy marking; the relationship “ R⇒” indicates a rightmost
derivation (see Section 3.1 earlier).

Definition 18: Suppose we have a context-free grammar (VN , VT , P, S), and a sequence
of symbols B1, . . . , Bt in VN , where there are rules Bi → ρi−1Bi−1βi−1 for 2 ≤ i ≤ t
(ρi, βi ∈ V ∗N). Suppose we have a rightmost derivation of the form:

Bt
R⇒ ρt−1Bt−1ωt−1

R⇒ ρt−1ρt−2Bt−2ωt−2

. . .
R⇒ ρt−1ρt−2 . . .B2ω2
R⇒ ρt−1ρt−2 . . . ρ1B1ω1

(all the ωi ∈ V ∗T). This derivation is said to be:

1. non-repeating if Bi 6= Bj whenever i 6= j.

2. rooted if Bt = S.

3. localised if there is a longer sequence of non-terminal symbols B1, . . . , Bm

and a rooted rightmost derivation Bm
R⇒ ρm−1 . . . ρ1B1ω

′

1 such that Bt = Bk
for some t < k ≤ m.

15

Computational Linguistics Volume 25, Number 4

4. essential if it is non-repeating and either rooted or localised.

Also, the derivation is said to be for B1 from Bt, and the string ρt−1 . . . ρ1 is said to be
the left context sequence of this derivation.

Definition 19: For any non-terminal A, the set of essential left contexts of A is

{σ ∈ V ∗T | ∃ an essential rightmost derivation D for A and ψ is the left
context sequence of D and ψ

∗⇒ σ}

The following lemma proves that essential left contexts have just the required prop-
erty.

Lemma 5
Let G be a CFG. Let T be a tree in trees(G). Let M be a non-terminal node in T . Let
σ be the terminal string spanned by T , and δ the portion of σ spanned by M . Then σ is
of the form φ1γδφ2 for some γ in the essential left contexts of the label of M .

Proof: (See Figure 1 for an intuitive picture.) Since T is a tree, there is a path of non-
terminal nodes (N1, . . . , Nt) where Ni is labelled Bi, for 1 ≤ i ≤ t, N1 = M,Nt is the
root of T , and Ni is the mother of Ni−1 for 2 ≤ i ≤ t . Since T ∈ trees(G), there must be
a sequence of rules Bi → ρi−1Bi−1βi−1 (ρi, βi ∈ V ∗N) such that the node Ni is licensed
by Bi → ρi−1Bi−1βi−1 for 2 ≤ i ≤ t. Hence there is a rooted rightmost derivation for
B1 from Bt. From this it is trivial to form an essential rightmost derivation for B1 from
some symbol Bk (where k ≤ t):

Bk
R⇒ ρk−1 . . . ρ1B1ω1

where ω1 ∈ V ∗T and

ρk−1 . . . ρ1B1ω1
∗⇒ θ

where θ is the substring of σ spanned by Nk.
This means that θ is of the form γδω1 where ρk−1 . . . ρ1

∗⇒ γ and B1
∗⇒ δ (since B1

is the label of M , and δ is the terminal string spanned by M). Then γ is an essential left
context of B1, by virtue of the way ρk−1 . . . ρ1 was constructed. Since θ is a substring of
σ, this establishes the result.2

5.3 Bottom-up derivations
Definition 20: In a BSCFG (G, tr), suppose A is a non-terminal symbol, and σ is a string
of terminal symbols. Then σ can be coherently derived from A (with tree T) iff
T is a syntax tree generated by G such that:

1. T spans σ

2. the root of T is labelled A

3. T is fully reachable.

The next definition requires that the derivation can occur without need for top-down
initiation.

16

Ritchie Completeness of Mixed Strategy Parsing

ρ β

ρ β

ρ ρ δ ω

γφ φ

k-1 k-1

k-1 1

1 1

1

1

σ

θ

B

B

B

B

B

2

t-1

t

1

k

1

Figure 1
Situation described in Lemma 5

17

Computational Linguistics Volume 25, Number 4

Definition 21: Let (G, tr) be a BSCFG. Suppose A is a non-terminal symbol, and σ is
a string of terminal symbols, from G . Then σ can be up-derived from A (written
“A ⇑∗ σ”) using (G, tr) iff:

1. σ can be coherently derived from A with tree T ;

2. the root of T is reachable from below.

It is clear that all nodes of such trees will appear in a chart:

Lemma 6
Let (G, tr) be a BSCFG. If A ⇑∗ σ using (G, tr), and C is a fully bidirectional chart based
on a string γ1σγ2, and using (G, tr), then C contains a representation of a tree T such
that T spans σ and the root of T is labelled A.

Proof: Follows from Lemma 3. 2

5.4 Left-introducible rules
In characterising formally the situation outlined informally in Section 5.1 above, the
following definition allows a more succinct statement.

Definition 22: Let A,B be two non-terminal symbols from a LCSCFG. A introduces
B from above (written “A ; B”) if either A = B, or there is a sequence of top-down
rules

A→ A0 . . .
A0 → A1 . . .
. . .
At → B . . .

Lemma 7
Let A,B be two non-terminal symbols from a LCSCFG (G, tr). If A ; B, then in
any bidirectionally mixed strategy explored chart C using (G, tr) which contains an
active edge (i, j, A′ → •α1 •Aβ1) there will also be an active edge in C of the form
(l, j, A′′ → •α2 •Bβ2) , where either l = i or l = j.

Proof: Straightforward. The case l = i allows for A = B (and A′ = A′′), and l = j is the
more general case where there is a sequence of top-down-invoked active edges linking A
to B. 2

Next we have a definition of the condition on rules which allow them to enter into
the parsing process despite the difficulties outlined in Section 2.1 above.

Definition 23: In a LCSCFG (G, tr), a rule B0 → B1α is said to be left-introducible
iff for every γ which is an essential left context of B0, there is a bottom-up rule A0 →
A1 . . . Ak such that

1. γ = χρ1 . . . ρi for some i < k

2. A1 ⇑∗ ρ1

3. ρj can be coherently derived from Aj , for all 1 < j ≤ i

18

Ritchie Completeness of Mixed Strategy Parsing

γ

χ ρ ρ

A A A
1 i i+1

0A

1 i

B
0

Figure 2
Left-introducibility

4. Ai+1 ; B0

Scrutiny of this definition should reveal its relationship to the informal outlines in
Sections 2.2 and 5.1 earlier (see also Figure 2). Notice that for any non-terminal A, if
S
∗⇒ A . . . then the empty string is an essential left context of A and hence any rule of

the form A→ . . . cannot be left-introducible.

Lemma 8
Let (G, tr) be a LCSCFG. Let T be an annotated tree generated by G, and M0 a non-
lexical node in T whose leftmost daughter is M1, with M0 labelled B0, M1 labelled B1,
and where the start of both M0 and M1 is m. Suppose that the rule B0 → B1 . . . licensing
M0 in T is left-introducible. Then in any fully bidirectional chart based on the terminal
string spanned by T and using (G, tr), there is an active edge of the form

(l,m,A→ •α •B0β)

(i.e an edge at the start of M0,M1, seeking B0).

Proof: Let the string spanned by T be σ, with σ = σ1δσ2, where δ is spanned by M0.
Let C be a fully bidirectional chart based on σ and using (G, tr). By Lemma 5, σ1 is of
the form φγ where γ is in the essential left contexts of B0. Since B0 → B1 . . . is left-
introducible, every such γ has the property that there is a bottom-up rule A0 → A1 . . .Ak
such that

• γ = χρ1 . . . ρi

• A1 ⇑∗ ρ1

• ρj can be coherently derived from Aj , 1 < j ≤ i

• Ai+1 ; B0

19

Computational Linguistics Volume 25, Number 4

It follows from Lemma 6 that, since A1 ⇑∗ ρ1, there are inactive edges in C for all
nodes of a tree with root label A1 spanning ρ1. Since A0 → A1 . . .Ak is bottom-up, this
means there is an active edge in C

(j, j′, A0 → •A1 •A2 . . . Ak)

where j is the start of the inactive edge for the root of this tree (i.e. the node labelled
A1), and j′ is its end. By Lemma 1 and Lemma 4, there are inactive edges in C labelled
A2, . . . , Ai, corresponding to nodes spanning ρ2 . . . ρi. By Lemma 1, there is an edge

(j,m,A0 → •A1 . . . Ai •Ai+1 . . .Ak)

where m is the start of δ. Since Ai+1 ; B0, by Lemma 7 there is an active edge

(l,m,A→ •α •B0β)

2

5.5 Indirect analysability
In Section 4 we defined “direct analysability” as a condition on grammars which would
lead to complete parsing. Now we establish a more general property which also leads to
completeness.

Definition 24: Let (G, tr) be a LCSCFG. A non-terminal symbol A0 in G is said to be
indirectly analysable iff every rule A0 → ω is either lexical, or top-down and left-
introducible, or bottom-up of the form A0 → A1α where A1 is indirectly analysable.5

Definition 25: A LCSCFG (G, tr) is indirectly analysable iff for every purely bottom-
up rule A0 → A1α, the non-terminal symbol A1 is indirectly analysable.

The next two lemmas ensure that a grammar with the property of indirect analys-
ability leads to complete parses. The first is just a generalisation of Lemma 4.

Lemma 9
Let (G, tr) be a BSCFG which is indirectly analysable. Let T be a tree in trees(G),
spanning the string σ. Let C be a fully bidirectional chart based on σ and using (G, tr).
Then for any node M labelled A in T :

1. If M is licensed by a purely bottom-up rule, then C contains a
representation of the subtree rooted at M .

2. If M is licensed by a top-down rule, and there is in C an active edge

(t, g, B0 → B1 . . . Bp−1 •Bp . . . Bq−1 •Bq . . . An)

where either Bp−1 = A and t is the end of M , or Bq = A and g is the start of
M , then C contains a representation of the subtree rooted at M .

5 Like the definition of “directly analysable” in Section 4, this strictly needs a more detailed
definition to allow for cycles. This is straightforward to provide, in exactly the manner used in that
earlier section, and then the “definition” given here becomes a theorem about indirect analysability.

20

Ritchie Completeness of Mixed Strategy Parsing

Proof: By induction on the height of nodes, in a manner very similar to Lemma 3, except
that part (a) of the Inductive Step is as follows:

Inductive Step(a): Suppose M0, with daughter nodes M1, . . . ,Mk, is licensed by a
purely bottom-up rule A0 → A1 . . .Ak. Then, since (G, tr) is indirectly analysable, this
means that A1 is indirectly analysable. Hence whatever rule licenses M1, it must be either
lexical, or top-down and left-introducible, or bottom-up with an indirectly analysable
symbol at the start of its RHS. In the lexical and bottom-up cases, the Base Case and
Inductive Hypothesis establish that C contains a representation of the tree rooted at
M1. If the rule is top-down and left-introducible, there is an edge seeking its LHS symbol
at the start of M1, and so, by the Inductive Hypothesis, there is a representation of
the tree rooted at M1 in C. Since C is fully bidirectional, it contains an edge spanning
M1 of the form:

(l, h, A0 → •A1 •A2 . . . Ak)

Repeated applications of the Inductive Hypothesis and Lemma 1 (Corollary) establish
that there is a representation of the tree rooted at M0 in C (i.e. the Inductive Step).
2.

Lemma 10
Suppose (G, tr) is an indirectly analysable LCSCFG. Suppose T ∈ trees(G), and C is a
fully bidirectional chart based on the string spanned by T and using (G, tr). Then for
any non-root node M in T , if M is licensed by a top-down rule A→ ω, then C contains
an active edge at the start of M of the form (t1, t2, B0 → α • β •A . . .) (i.e. seeking A).

Proof: By induction on the depth of nodes.
Inductive Hypothesis: Assume that for any node M of depth d′, where 0 ≤ d′ < d,

the lemma holds.
Base Case: Suppose M is of depth 1 (i.e. a daughter of the root node). Suppose

the root is licensed by a rule S → A1 . . . Ak, where Mi is the ith daughter of the root
(1 ≤ i ≤ k) and M = Mj.

(a) Assume this rule is purely bottom-up. Since (G, tr) is indirectly ana-
lysable, A1 is indirectly analysable. Consider the rule which licenses
M1. It cannot be left-introducible, as S R⇒ A1 . . . (see earlier remark
about empty essential left contexts); hence it must be either lexical or
bottom-up. By Lemma 9, C contains a representation of the subtree
rooted at M1. Since the rule S → A1 . . . Ak is bottom-up, C contains
an active edge of the form (0, 0, S → •A1 •A2 . . .Ak) .

(b) Assume this rule is top-down. Then there must be an empty active
edge (0, 0, S → • •A1 . . . Ak) .

By repeated applications of Lemma 9 and Lemma 1, there are edges of the form

(0, ti, S → •A1 . . . Ai •Ai+1 . . . Ak)

1 ≤ i ≤ (j − 1). The last of these fulfils the condition.
Inductive Step: Let M be a node labelled A of depth d > 1, licensed by a top-down

rule r. Let its mother node be N , of depth (d − 1), and the leftmost daughter of N be
M1. Consider the rule r′ (of the form A0 → A1 . . .Ak) which licenses N .

(a) Suppose r′ is purely bottom-up. Then M1 is labelled with an indirectly analysable
symbol, A1. Hence for the rule licensing M1, three cases must be considered:

21

Computational Linguistics Volume 25, Number 4

1. It is lexical. In this case, C contains a representation for M1.

2. It is top-down and left-introducible. By Lemma 8, there is an edge at the start
of M1 seeking its label. If M = M1, this establishes the Inductive Step in
this situation. Otherwise, by Lemma 9, there is a representation in C for the
subtree rooted at M1.

3. It is bottom-up of the form A1 → B1 . . . where B1 is indirectly analysable. By
Lemma 9, there is a representation in C for the subtree rooted at M1.

Since there is a representation in C for the subtree rooted at M1, there is an (inactive)
edge in C of the form (i, j, A1 → • . . . •) , where i is the start of M1 (and hence of N).
Since r′ is bottom-up and A1 is the leftmost (trigger) symbol of its RHS, this leads to
an active edge of the form (i, i, A0 → • •A1 . . .Ak) for r′ at the start of M1 and N . By
repeated applications of Lemma 1 and Lemma 9, there is an active edge seeking A at the
start of M .

(b) Suppose r′ is top-down. By the Inductive Hypothesis, there is an edge at the
start of N seeking the label of N . Since r′ is top-down, there is also an empty active edge
for r′ at that point. If M = M1, this establishes the Inductive Step in this situation.
Otherwise, by repeated applications of Lemma 1 and Lemma 9, there is an active edge
seeking A at the start of M . 2

Theorem 3
If a LCSCFG (G, tr) is indirectly analysable, then tr is complete.

Proof: Follows from Lemma 9 and Lemma 10. 2

5.6 Undecidability
We have established that the condition of “indirect analysability” suffices to ensure com-
pleteness. Unfortunately, indirect analysability is not a decidable property of annotated
grammars, as we now show.

Theorem 4
It is undecidable whether an arbitrary LCSCFG is indirectly analysable.

Proof: Suppose that there were a decision procedure for indirect analysability. This could
then be used to construct a decision procedure which determines for any two CFGs G1,
G2 whether every member of L(G1) ends in a substring which is a member of L(G2). This
is an undecidable problem (see Appendix B); hence, the indirect analysability question
is also undecidable. The construction proceeds as follows.

Suppose we have the two arbitrary CFGs G1 and G2 over the same alphabet VT , and
assume that their non-terminal alphabets V 1

N , V
2
N do not intersect. Construct a LCSCFG

as follows. The distinguished symbol S′ is distinct from all symbols in V 1
N ∪ V 2

N . Use
symbols B1, B2, ...B6 also not in V 1

N ∪ V 2
N . The purely bottom-up rules are all the rules

of G2, together with

B1 → B2B3

B6 → S2B2

where each Si is the distinguished symbol of Gi. The purely top-down rules are all the
rules of G1 together with

22

Ritchie Completeness of Mixed Strategy Parsing

S′ → S1B1

B2 → B4B5

Also we include lexical rules:

B3 → a
B4 → b
B5 → c

for some terminal symbols a, b, c.
This LCSCFG is indirectly analysable iff (by definition) every purely bottom-up rule

has an indirectly analysable symbol at the start of its RHS (the trigger position). All the
rules taken directly from G2 meet this condition, since all are bottom-up. So, therefore,
does the rule B6 → S2B2. All the rules taken directly from G1, and the rule S′ → S1B1,
do not affect the condition, since all are top-down. Hence the grammar is indirectly
analysable iff in the rule B1 → B2B3, the trigger symbol B2 is indirectly analysable.
This depends on whether the only rule expanding B2, B2 → B4B5, is left-introducible.
The essential left contexts of B2 is the set {γ ∈ V ∗T | S1

∗⇒ γ}. The only symbol X
for which X ; B2 is B2 itself. Hence the only rule which meets the schema for left-
introducibility is B6 → S2B2. So B2 → B4B5 is left-introducible iff every γ such that
S1

∗⇒ γ is of the form ψρ with S2 coherently derived from ρ. Since all G2 rules are
bottom-up, S2 is coherently derived from ρ iff S2

∗⇒ ρ. Hence the left-introducibility of
the rule in question is logically equivalent to L(G1) ⊆ V ∗T + L(G2) (where + indicates
concatenation). 2

6 Some further complications

So far, the proofs have shown that direct analysability is a sufficient condition for com-
pleteness, and that indirect analysability (a more general condition) is also sufficient. The
question might be posed – is indirect analysability necessary for completeness? In fact,
it is not, as there is at least one other sufficient condition for completeness, not covered
by indirect analysability.

It is not worthwhile formalising and analysing these possibilities in detail, but a
brief informal outline of one such condition may be helpful. This occurs where a set of
rules that is not directly analysable, and might seem to cause “blocking” as discussed
in Section 2.1 earlier, is redeemed by the interaction with other rules in the grammar.
This is similar to the phenomenon analysed in Section 5 above, but whereas the analysis
above dealt with a configuration of rules which can be parsed bottom-up to the left of
the problematic rule, there is an analogous condition on subtrees to the left which can
be parsed top-down.

The following grammar illustrates this phenomenon.

S → H K
S → Z B
H → E F
E → P R
Q→ T V
Z → H Q
K → Q D
P → p
R→ r
F → f

23

Computational Linguistics Volume 25, Number 4

D→ d
T → t
V → v

Here, the grammar is not indirectly analysable, as the purely bottom-up rule K → Q D
has a trigger category Q which is not indirectly analysable. (The rule S → H K is also
problematic.) However, the only situation in which K → Q D would be needed would be
to parse a string prftvd. Since S ; H, there will be an empty active edge introduced
for H → E F at the start of the string. This will parse prf (top-down) as an H, and
this will combine with the active edge already introduced for Z → H Q, leading to the
introduction of an empty active edge for Q→ T V at the start of the correct substring,
tvd.

Intuitively, this is similar to the phenomenon defined earlier as “left-introducible,”
but with the catalytic sequence of rules being triggered top-down from the distinguished
symbol of the grammar. It is likely that some generalisation could be made to cover
this pattern of rules and those described in Section 5, but the undecidability result in
Theorem 4 suggests that this would not improve matters – the more general property
would also be undecidable.

7 Discussion

7.1 Other bidirectional schemes
As mentioned in Section 1 above, the ideas here were developed from a semi-formal pro-
posal by Steel and de Roeck (1987). The formalisation given here is a slight generalisation,
as it allows multiple possible triggers on the RHS of a rule, which Steel and de Roeck did
not consider. Steel and de Roeck did not formalise their proposal in detail, and did not
show how to check if such annotations could lead to the parser missing possible analyses
(i.e. becoming incomplete), although they concede that this is an important issue.

Satta and Stock (Satta and Stock, 1989; Satta and Stock, 1991; Satta and Stock,
1994) have developed various detailed and rigorous systems of chart-based parsing, in-
cluding one (Satta and Stock, 1989) which allows a form of purely bottom-up bidirectional
parsing, but they do not explore the question of mixed strategy invocation of rules. Most
of the mechanisms in their bottom-up method are aimed at avoiding redundant edges in
the chart, a problem which has been ignored here by working at a more abstract, set-
theoretic level. Satta and Stock provide a more algorithmic approach in which such issues
are of concern. A practical implementation of the definitions given above might have to
consider whether their system could be adopted to achieve greater efficiency. However,
Willis (1996) points out that in some situations the scheme given in Satta and Stock
(1989) can be less efficient (in terms of edges introduced to the chart) than a fairly naive
implementation of a mixed strategy chart parser whose grammar is annotated to run
bottom-up (essential for comparison with the Satta and Stock algorithm). This seems to
be because the Satta and Stock method involves the introduction, when a constituent is
found, of an edge for every rule with that type of constituent on its RHS.

7.2 Head Parsing
There has been a growth in interest over the past decade or so in “head-driven” parsing
(e.g. Kay (1989)). In these approaches, the parsing is guided by the fact that exactly one
item on the right hand side of a grammar rule is the head of the construction, in the
sense that it is a linguistically important part of the rule. Some of these proposals have
been formalised using chart parsing, and their properties explored.

Although some of the head-driven strategies are said to act “top-down,” this refers

24

Ritchie Completeness of Mixed Strategy Parsing

to the parser exploring from a prediction of a specific non-terminal symbol in some region
of the input, but not to rules being introduced because the grammar-writer has indicated
that it is to be introduced top-down in the sense used here. The “head” markings are
always on the right hand side of the rule, never the left hand side (since that would
not make sense for a linguistic “head”). Hence, head-driven parsing is, in terms of the
approach defined here, a form of bottom-up parsing, and the issues of incompleteness
resulting from a mixed strategy algorithm do not arise. The mixed strategy approach
here (which was developed independently of the head-driven work) could be seen as a
possible generalisation of a very simple head-driven parser.

There are similarities between the bidirectional scheme here and the head-corner
parser of Sikkel and op den Akker (1996), in which top-down predictions can arise either
from the distinguished symbol (predicted to span the whole input) or by working out-
wards from the specified head constituent (as in the left and right extension principles in
Section 3.3.0.9 above). They define a transitive reflexive relationship “>∗h” which roughly
means that A>∗hB if there is a chain of rules from A to B such that the left-hand side of
each one is the head of the previous rule in the sequence. Sikkel and op den Akker’s chart
handling principles all have the precondition that the introduction of the new edge can
happen only if the region of the input in question is spanned by a predictive edge seeking
a symbol A such that A>∗hB, where B is the label of the constituent or prediction being
introduced. This is, as they make clear, comparable to using a left-corner oracle to avoid
unnecessary edges in a more traditional parser. A similar optimisation might be possible
for a mixed strategy parser of the sort discussed here, by using the triggers in bottom-up
rules in the same way that heads are used by Sikkel and op den Akker.

7.3 Extended Generalised Left Corner Parsing
Stabler (1994) outlines a very general approach to top-down and bottom-up parsing of
context-free grammars, in a somewhat different formal framework. Although his theor-
etical mechanisms are in some ways a generalisation of the left-corner strategy-marked
grammars discussed in Section 5 above, there is one respect in which they are slightly
less general, and which places the chart-based proofs given above outside the scope of
his results. Stabler defines a class of extended generalised left corner (XGLC) pars-
ers, by attaching an (extended) trigger function to a CFG. This function maps each
pair consisting of a stack configuration and a rule to a prefix of the RHS of that rule.
Intuitively, the rule indicates how much of the RHS of the rule has to be recognised
before that rule is to be introduced into the parsing process; making this dependent on
the parser’s stack (which can hold both recognised symbols and predictions of symbols
needed) allows some sensitivity to the parsing context. Stabler cites a proof that all such
parsers are complete with respect to the original CFG. This may seem to conflict with
the proofs offered above, but it is crucial that Stabler’s trigger functions are defined to
be total functions – for any stack configuration, there must be some prefix of the rule’s
RHS. To faithfully reproduce the notion of a top-down rule used in the mixed strategy
chart system, the trigger function would have to be partial, indicating no prefix at all in
those cases where the stack did not have the right prediction. It is reasonable to assume
that Stabler’s completeness proofs rely on the total nature of the trigger function, and
thus do not cover the notion of mixed strategy parsing defined here.

7.4 Possible uses
As mentioned in Section 1 above, the original Steel and de Roeck proposal was put
forward as a way of improving the efficiency of parsers for natural languages, such as
English. Although they did not have any real statistical evidence that this guidance
leads to more efficient parsing, they claimed that it did appear to help, judging by the

25

Computational Linguistics Volume 25, Number 4

performance of the parser they had implemented for use in an English language query
interface. That approach is dependent on the grammar-writer having some linguistic
intuitions about which constituents are best parsed bottom-up and which are best parsed
top-down. Alternatively, the rule annotations could be developed from statistics about
rule usage in parsing suitably large corpora.

Some preliminary results (Willis, 1996) suggest that on small grammars, gains of up
to 35% can be made in efficiency (measured in terms of chart entries) by using certain
combinations of the mechanisms formalised here. These gains are not great, and it is
unclear whether similar improvements could be achieved in realistically large natural
language grammars. The formal results in Sections 4 and 5 above suggest that it may
not be worthwhile carrying out such experiments, unless grammars are restricted to those
which are directly analysable.

Context free grammar has been used as the basis here, both to simplify the formal-
isation, to achieve some degree of generality, and in order to relate the work to existing
formal language theory. Steel and de Roeck also use a CFG base as an expository device
for their ideas. However, it is extremely rare within computational linguistics for a pure
CFG to be used in actual systems which parse natural language. Usually, some much more
complex grammatical formalism is used, such as unification grammar (Shieber, 1986).
Many of the methods for parsing unification grammars are closely based on traditional
CFG parsing techniques, with enhancements. This means that an obvious extension of
the theoretical definitions and results in this paper would be the application of mixed
strategy bidirectional parsing to unification grammars. Most of the framework could be
retained, since the main difference between a simple unification grammar formalism and
CFG is in the way that non-terminal symbols are compared or combined with each other.
It is highly improbable that the undecidability result would be overturned, and it is even
conceivable that the appropriate counterpart of “direct analysability” might turn out to
be less tractable.

8 Conclusions

Although the idea of allowing the grammar-writer to specify the strategy to be used for
each rule in a grammar may seem superficially appealing, the formal evidence presented
here is that it is severely limited. In general, grammar-annotation may lead to incom-
pleteness. Although there is a decidable property – direct analysability – which guaran-
tees completeness, it is over-restrictive, in the sense that there are complete annotations
which are not directly analysable. There is also a wider class of complete annotations –
indirectly analysable – which cannot be decidably detected.

There is also some question over the practical effectiveness of the mixed strategy
technique, although that issue has not been explored here.

26

Ritchie Completeness of Mixed Strategy Parsing

Appendices

A Computing direct analysability

The algorithm is a simple variant of the use of an AND-OR graph in problem solving,
as in Nilsson (1971). The graph will contain a node for each non-terminal symbol A in
the grammar, and an or node for each bottom-up rule. Each node has a label, which is
either a non-terminal symbol or or, and may, optionally, have a marking, which is either
solved or failed.

1. For each symbol A ∈ VN , create a node NA, and insert arcs and markings as follows:

if there is a purely TD rule of the form A→ α
then mark NA as failed

else if all rules of the form A→ α are lexical
then mark NA as solved

else
for each bottom up rule of the form A→ A1 . . .Ak:

- create a node N labelled or;
- create an arc from NA to N ;
- create an arc from N to NAi for every i ∈ tr(A→ A1 . . .Ak)

such that i > 0.

At this point, each non-terminally-labelled node has outgoing arcs for every bottom
up rule that might expand it, and each of these arcs connects to an or node which in
turn connects to every possible trigger category for that rule. Nodes marked failed cor-
respond to categories which are not directly analysable; nodes marked solved correspond
to those which are directly analysable. Initially, any node marked solved or failed has
no outgoing arcs.

2. Repeat until no changes occur in the graph:

for each node N in the graph:

if N is marked failed

then delete any arc into N from a node M ;
if N is labelled or, or there are no other outgoing

arcs from M ;
then - mark M as failed;

- remove any outgoing arcs from M ;
if N is marked solved

then if there is an arc into N from an or-node M
then - mark M as solved;

- remove any outgoing arcs from M .
else if there is an arc into N from a node MA

then delete this arc from MA to N
if this leaves no outgoing arcs from MA

then mark MA as solved.
if N is an or node with no incoming arcs
then delete N and all its outgoing arcs.

The properties remarked above remain invariant during this iteration. The iteration
terminates as the graph is finite. On termination, the only arcs left must be in cycles.
The categories associated with any nodes in cycles should be taken as directly analysable.

27

Computational Linguistics Volume 25, Number 4

3. For every node NA which has an arc (incoming or outgoing) attached to it, mark NA
as solved.

4. If for every purely bottom up rule A→ A1 . . . Ak, there is an i ∈ tr(A→ A1 . . . Ak)
such that NAi is marked solved, then the grammar is directly analysable.

The above statement is not intended to be maximally efficient. No formal proof of its
correctness is given here, but there is a fairly straightforward relationship to the property
of direct analysability which is stated in (*) in Section 4.2.

B Undecidability proof

Lemma : For any two context free grammars G1, G2, it is undecidable whether every
member of L(G1) ends in a substring which is a member of L(G2).

Proof: Let G1 and G2 be two CFGs over the same alphabet V , with languages L(G1)
and L(G2) respectively. Let # be a symbol which is not a member of V . Consider the
language L′1 given by:

{#x | x ∈ L(G1)}

and L′2 given by:

{#y | y ∈ L(G2)}

These are both context free languages; assume that grammars G
′

1, G
′

2 generate them.
Suppose we have a procedure which would decide, for any two context free grammars,
whether every member of the language of one ends in a substring which is a member of
the language of the other. Consider the question whether every member of L(G

′

2) (i.e.
L′2) ends in a substring which is a member of L(G

′

1) (i.e. L′1). This is true iff every string
of the form #y in L′2 has a final substring which is in {#x | x ∈ L(G1)}. Since # is not
in V , this can be true iff y ∈ L(G1). This will be true for every such string in L′2, iff
y ∈ L(G1) for every y ∈ L(G2); i.e. L(G2) ⊆ L(G1)

That is, a decision procedure for the final substring question would allow the con-
struction of a decision procedure for the subset question for the languages generated by
two arbitrary context-free grammars, which in turn would provide a decision procedure
for the equivalence of the languages, and that is known to be undecidable (Aho and
Ullman, 1972, Section 2.6.3). 2

28

Ritchie Completeness of Mixed Strategy Parsing

Acknowledgements
I would like to thank Anne de Roeck, Alistair
Willis and Suresh Manandhar for useful
discussions, and Nicolas Nicolov for com-
ments on an earlier draft. The incisive and
thorough comments of various anonymous
reviewers have greatly improved this pa-
per.

References

Aho, Alfred V. and Jeffrey D. Ullman. 1972.
The Theory of Parsing, Translation, and
Compiling. Volume 1: Parsing.
Prentice-Hall, Englewood Cliffs, NJ.

Earley, Jay. 1970. An efficient context-free
parsing algorithm. Communications of
the ACM, 13(2):94–102.

Kay, Martin. 1989. Head-driven parsing. In
Proceedings of International Workshop on
Parsing Technologies, pages 52–62,
Carnegie Mellon University, Pittsburgh,
PA., August.

Maclane, Saunders and Garrett Birkhoff.
1967. Algebra. Macmillan, London.

Nilsson, Nils J. 1971. Problem-solving
methods in artificial intelligence.
McGraw-Hill, New York.

Partee, Barbara H., Alice ter Meulen, and
Robert E. Wall. 1990. Mathematical
Methods in Linguistics. Kluwer
Academic, Dordrecht.

Satta, Giorgio and Oliviero Stock. 1989.
Formal properties and implementation of
bidirectional charts. In Proceedings of
Eleventh International Joint Conference
on Artificial Intelligence (IJCAI-89),
pages 1480–1485.

Satta, Giorgio and Oliviero Stock. 1991. A
tabular method for island-driven
context-free grammar parsing. In
Proceedings of Eighth National
Conference on Artificial Intelligence
(AAAI-91), pages 143–148.

Satta, Giorgio and Oliviero Stock. 1994.
Bidirectional context-free grammar
parsing for natural language processing.
Artificial Intelligence, 69:123–164.

Shieber, Stuart. 1986. An Introduction to
Unification Approaches to Grammar.
CSLI Lecture Notes Number 4. Center for
the Study of Language and Information.

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and Implementation of Deductive
Parsing. Journal of Logic Programming,
24(1 & 2):3–36.

Sikkel, Klaas and Rieks op den Akker. 1996.
Predictive head-corner chart parsing. In
Harry Bunt and Masaru Tomita, editors,
Recent Advances in Parsing Technology.
Kluwer Academic, Netherlands,
chapter 9, pages 169–182.

Stabler, Edward P. 1994. Parsing for
incremental interpretation. Draft paper,
UCLA, Los Angeles.

Steel, Sam and Anne de Roeck. 1987.
Bidirectional chart parsing. In J. Hallam
and C. Mellish, editors, Advances in
Artificial Intelligence. John Wiley, pages
223–235.

Stoy, Joseph E. 1981. Denotational
Semantics: the Scott-Strachey approach to
programmin g language theory. MIT
Press, Cambridge, Mass.

Thompson, Henry and Graeme Ritchie.
1984. Implementing natural language
parsers. In T. O’Shea and M. Eisenstadt,
editors, Artificial Intelligence: Tools,
Techniques and Applications. Harper and
Row, New York, chapter 9, pages 245–300.

Willis, Alistair. 1996. Exploring chart
parsing mechanisms. Master’s thesis,
Department of Artificial Intelligence,
University of Edinburgh, Edinburgh,
Scotland.

Winograd, Terry. 1983. Language as a
Cognitive Process. Volume I: Syntax.
Addison-Wesley, Reading, Mass.

29

