
Assessing Creativity

Graeme Ritchie
Division of Informatics
University of Edinburgh

80 South Bridge
Edinburgh EH1 1HN
g.d.ritchie@ed.ac.uk

Abstract

In exploring the question of whether a computer program is behaving creatively, it is important to be explicit, and if
possible formal, about the criteria that are being applied in making judgements of creativity. We propose a formal (and
rather simplified) outline of the relevant attributes of a potentially creative program. Based on this, we posit a number of
formal criteria that could be applied to rate the extent to which the program has behaved creatively. A guiding principle
is that the question of what computational mechanisms might lead to creative behaviour is open and empirical, and
hence we should clearly distinguish between judgements about creative achievements and theoretical proposals about
potentially creative mechanisms. The intention is to focus, clarify and make more concrete the debate about creative
programs.

1 Introduction

The goal of this paper is to set out some of the issues rel-
evant to assessing whether a particular computer program
has been, or is being, “creative”. There is no empirical
work presented here: the aim is solely methodological.

The question of how a computer program might func-
tion creatively is of interest within artificial intelligence.
It would be possible to hypothesise that various types of
processing (e.g. meta-level reasoning, evolutionary algo-
rithms) are well suited to creative computation. However,
any such mechanism has to be judged on how successful it
is, as there is no direct way to assess the inherent creativ-
ity of a computational mechanism. To judge the (creative)
success of a program, we have to have a clear notion of
what we mean by a program “being creative”. Without
that, discussion of the pros and cons of different internal
mechanisms are just speculation. This paper tackles that
logically prior question of judging the creativity of a pro-
gram.

We will suggest some formal characteristics of a pro-
gram’s output, and of its construction, which are pertinent
to the assessment of its creativity, thus offering a step
towards a descriptive model of such assessments. Our
framework allows for judgements to be relative to differ-
ent points of view (either about the merit of various kinds
of output from the program, or about the extent to which
different factors contribute to creativity), and emphasises
how the program was constructed, and the properties of its
output, rather than how the program operates internally.

Attention is limited here to programs which produce
some set of artefacts (e.g. pictures, stories, conjectures)

which are capable of being assessed by human judges in
isolation from the process which produced them. Systems
which compute abstract entities such as analogies are cov-
ered only if the entity (e.g. the analogy) either is used to
generate artefacts, or can be stated in some way that is
open to evaluation by humans.

2 Creativity judgements

Judgements of creativity originated as assessments of hu-
man behaviour, and our whole notion of “creative” is de-
rived from ideas about human creativity. Unfortunately,
these ideas are not only imprecise and unformalised, they
tend to manifest various prejudices which can impede their
transfer to the evaluation of computer behaviour. In our
culture at least, certain activities are assumed to be more
creative than others. Painting a picture, writing a poem, or
creating a sculpture are often deemed creative, even when
performed in an ordinary or mediocre manner. Mathemat-
ics, science, or engineering are rarely classed as creative,
unless they are done exceptionally well. This bias does
not seem helpful in a rigorous attempt to pin down the no-
tion of creativity, particularly when applied to machines.
Although there is still a tendency within AI to tacitly ac-
cept this intellectual apartheid of creative vs. non-creative
activities, it would be better if we could be more neutral
in our formal characterisation of creative actions. In the
rest of this paper, the illustrative domains mentioned will
typically be areas such as poetry-writing or story-telling,
but this does not mean that the formal definitions or sub-
stantive proposals relate only to those activities. We will
abstract away from the particular genre of activity, and

discuss only the formal properties of the process.
Boden (1992) makes the important distinction between

H-creativity (producing an idea/artefact which is wholly
novel within the culture, not just new to its creator) and P-
creativity (producing an idea/artefact which is original as
far as the creator is concerned, even though it might have
been proposed or generated elsewhere in the culture, per-
haps much earlier in history). Boden points out that when
studying the process of being creative (within a single hu-
man or in a computer program) it is P-creativity that is at
issue, since we are interested in how a single agent can
come up with something that is novel relative to its initial
state of knowledge. A P-creative discovery may prove to
be of little use to society because it repeats something that
was already known, but that does not render the intellec-
tual or artistic feat of producing the idea/artefact uncre-
ative, viewed in isolation. The mechanisms of creation
are what we are interested in here.

When people do assess human creativity, they take
into account various factors, and sometimes confuse dif-
ferent notions of creativity (H-creativity and P-creativity,
for example). Leaving aside the prejudice in favour of
“art” against “science” alluded to above, perhaps the main
criterion which is deployed is the following:

Novelty: To what extent is the produced item
dissimilar to existing examples of that genre?

Closely related to this is a test of whether the item has
“artistic” value:

Quality: To what extent is the produced item
a high-quality example of that genre?

There may be subsidiary tests of creativity, such as
whether the person worked unaided, but they are rela-
tively minor compared to the two tests listed above. If
a person produces a painting which is radically different
from previous work (their own work and work they have
seen, for the purposes of considering P-creativity), and
which is definitely a good painting, then that will usually
be deemed creative. What is rarely brought into the as-
sessment is how the person came up with the idea/artefact,
that is, the thought processes by which the result came
into being.

In the main section of this paper, we shall suggest
that when it comes to assessing the creativity of a com-
puter program, the situation is slightly more complex, but
also (in principle at least) more amenable to formalisa-
tion. Nevertheless, judgements about human creativity
are the starting point, as they delineate the intuitive con-
cept. Our proposals will attempt to reflect as faithfully as
possible that pre-theoretic notion.

3 The role of computation

Boden (1992) presents a wide-ranging, subtle and thought-
provoking discussion of creativity. It is outwith the scope

of this paper to summarise and debate her ideas in detail,
but it is important to deal at least briefly with one or two
of her central points.

Boden argues that true creativity results from the trans-
formation of conceptual space. The evidence for this is
that a creative achievement produces an artefact (abstract
or concrete) which not only is significantly different from
previous exemplars, but also establishes new norms by
which further exemplars may be classified and judged;
for example, early Cubist paintings were not only radi-
cally different from previous representational art, they set
up a new range of artistic possibilities. She goes on to use
this analysis in terms of conceptual space as a criterion
for assessing the creativity of programs, by applying it
not merely to the final artefact (which could be assessed
in terms of similarity measures or the presence/absence
of particular properties), but to the manner in which the
result is produced. That is, she regards an explicit trans-
forming of the space as a necessary condition for a pro-
gram to be creative. This constitutes an interesting step
in the argument, and one which it is easy to overlook. It
defines the threshold for creativity in machines as being
higher than that for humans. When a human produces
some novel artefact, the extent to which it establishes a
new or transformed conceptual space has to be judged
largely from the inherent properties of the artefact. For
computers, Boden narrows the goalposts by demanding
not only that the artefact exhibit suitable properties, but
that the process that gave rise to it (which is much more
accessible in the computer case than in the human situ-
ation) must meet the test of space-transformation. This
also means that a particular theoretical analysis of what
might produce creativity becomes part of the empirical
judgement of whether a program has been creative.

Boden is not alone in arguing that the manner of com-
putation is relevant to the judgement of creativity, as it is
not unknown for critics of AI to refuse to accept programs
as creative (or intelligent) once the mundane mechanistic
nature of the inner workings are revealed. (See also Sec-
tion 9.3 below.) In the framework presented below, we
will adopt a slightly different position. We take it that
the question of which computational mechanisms result
in creativity is open and empirical. What we need to do
is set down criteria for a program “being creative” which
are, as far as possible, based on the ordinary intuitive no-
tion of creativity and which assume as little as possible
about theories of how to compute creatively. Then any
proposed creative mechanism (e.g. analogical reasoning)
can be assessed as to whether it does indeed result in pro-
grams which fulfil the independent criteria of creativity.

4 Overall framework

Our aim here is to define as precisely and as formally as
possible the attributes one might look for in order to de-
cide whether or not a particular computer program had

behaved creatively. As we are attempting to generalise
across many possible avenues of creativity (ranging from
music to poetry to mathematical conjectures), we need
to establish what sort of system we are considering. In
sense, what we need is a reference architecture (Cahill
et al., 1999) which presents a consensus or stereotype of
a creating program, and relative to which we can frame
our definitions and discussion.

4.1 Basic data

A creating program operates to produce artefacts in some
medium. The “medium” is essentially the output data
type of the program. At the level of abstraction adopted
here, we can ignore (at least provisionally – see Section 9.4
below) the internal structure of the entities that the pro-
gram produces, and simply postulate a set, possibly infi-
nite, of basic items. This is not a definition of what would
count as a “successful” or “valid” output for the program,
merely a statement of the of data type which it produces
(e.g. strings of words, arrays of pixels). For example, the
basic item set for a program intended to produce simple
puns might be the set of a finite sequences of words.

4.2 Rating the output

We want any assessment of items produced by a program
to be as faithful as possible to the two notions of Novelty
and Quality stated in Section 2 above. However, those
two informal statements tended to assume that the item
was indeed a valid example of the chosen genre, which
could then be rated for similarity or quality. In the realm
of computer generation, life is more complicated, and we
must lower our sights accordingly. An implemented sys-
tem is sure to generate basic items, but there is no guar-
antee that these will be to any extent exemplars of the
intended (and perhaps fuzzily defined) target class. A
would-be poetry generator will normally generate strings
of words and punctuation (i.e. basic items), but it may
be that not all of them are poems, let alone good po-
ems. Colton (personal communication) has pointed out
that the HR program (Steel et al., 2000; Colton et al.,
2000) produces only well-formed items of the target class
– mathematical conjectures – but such tidiness is not uni-
versal for generating programs. In computational gen-
eration of artistic artefacts, simply managing to produce
something which is a valid story/poem/joke etc. is a non-
trivial achievement. Hence our formalism assumes slightly
less than the two yardsticks from Section 2, and starts at
a more fundamental level in its ratings.

We shall take basic items as being possible instances
of the intended class of artefacts. More subtly, they may
be instances to some degree. We will therefore represent
a class of artefacts (the target of the creative exercise) as a
mapping from the basic items to the interval [0, 1]. (This
is equivalent to treating the class as a fuzzy set, but that
perspective will not be developed here.)

This takes one step towards allowing us to capture the
Novelty criterion. We will decompose the intuitive idea
of novelty (from the viewpoint of P-creativity, which is
what we are concerned with here) into two separate fac-
tors. Firstly, items which gain low scores on the mapping
which characterises the target class of artefacts will be
deemed to be dissimilar to the norm for that class. That
is, we assume that this mapping encodes the notion of es-
tablished norms for the artefact class, so that high-scoring
items are very much part of the class, and low-scoring
ones are implicitly dissimilar from the past practice (in
society or culture) which has established the class. Sec-
ondly, in Section 5 below, we shall try to formalise the
notion of a program producing items which are different
from those which guided its original construction. (See
also Section 9.6 below).

A useful distinction can be made between properties
which measure to what extent an item meets the crite-
ria for membership in the intended artefact class (is it a
poem/joke/conjecture/etc.?) and further properties whose
presence indicate that the artefact is a good instance of
this type of artefact (a good poem, a funny joke, an ele-
gant or profound conjecture, etc.). This latter evaluation
will also be formalised as a mapping from basic items to
[0, 1].

This attempts to capture the second informal property,
Quality, in Section 2 above.

These two mappings – for class membership and qual-
ity – may themselves be based on further definitions (e.g.
a checklist of properties, perhaps with weightings attached).
At present, we have no firm proposals on what this infor-
mation should be, but we shall call it a rating scheme, and
list it separately so that the distinction can be made in our
later definitions, abstracting away from its internal details.
We shall also assume an operation APPLY which, given a
rating scheme, creates a mapping to [0, 1]. Notationally,
we shall usually make the abbreviation of using the name
of a rating scheme as if it were the function which AP-
PLY would create; that is, writing rat(X) as short for
APPLY(rat)(X).

The set of possible rating schemes for a set A will be
written as ‘RAT (A)’.

4.3 Ratings, weightings and spaces

Certain forms of rating schemes would allocate the ba-
sic items to points in a multi-dimensional space, which
in turn would lead naturally to a measure of distance be-
tween items. This might have further advantages in dis-
cussing the properties of program output (cf. Section 3
above).

Given the set of basic items, there will be some prop-
erties that these items may or may not have; or to be more
subtle, that these items may have to varying degrees. For
example, a poem is a sequence of words that has proper-
ties such as – depending on your view of poetry – rhyme,
rhythm, imagery, etc.

Definition 1 Given some set A a property rating scheme
for A is a tuple 〈f1, . . . , fn〉 of functions from A to the
closed interval [0,1].

Intuitively, in this definition each fi represents a prop-
erty that an element of A may have to some degree. The
ordering on the mappings f1, . . . , fn is arbitrary, and it
would have been possible to formalise this as a set, but us-
ing a vector has the possibly useful side-effect that a prop-
erty rating scheme (or a weighted property rating scheme,
below) induces a measure of similarity on the set A, since
the scheme will assign to each item a vector of values, for
which a formal distance measure can be defined.

Definition 2 Given some set A a weighted property rat-
ing scheme for A is a tuple 〈(f1, w1) . . . (fn, wn)〉 where
each fi is a function from A to the closed interval [0,1],
and each wi is a numerical weight, with

∑n
i=1

wi = 1.

This enhanced definition would allow for properties to
reflect relative values placed on them by who or whatever
is judging them.

In what follows, nothing depends on the rating schemes
being property-based, although that would be a plausible
form to use.

4.4 The objects generated

We can now use a rating scheme as representing a class
of basic items.

Definition 3 An artefact class consists of a set B of basic
items and a rating scheme for B.

Here we are using a single rating scheme to capture
both inherent, measurable properties of a basic item, such
as syllable counts, and more subjective aspects. In partic-
ular, discussions of creativity sometimes argue that the ex-
pectations of the audience are relevant – an artefact which
exceeds or violates the expectations of the perceiver may
be rated more highly. Here, those aspects are packed into
the notion of an artefact class, on the grounds that expec-
tations are in a sense a subjective notion of what typifies
a particular genre. This should suffice at least as a first
approximation.

We shall return to the issue of subjectivity later.
As noted above, we also need a rating scheme to rep-

resent the quality of the generated artefact.

Definition 4 A value-based artefact class consists of a
triple (B, typ, val), where B is a set (the basic items) and
typ,val ∈ RAT (B) (the typical ratings and the value
ratings respectively).

We will postpone showing how this formal appara-
tus can be used to describe creative effects until we have
defined in more detail what constitutes a generating pro-
gram.

4.5 The program

The origins of a generating program are pertinent to as-
sessing its creativity, as is often acknowledged by worries
about “results being pre-programmed in”. We propose an
abstract stereotype of what a creative program is, and how
it comes into being, as follows.

From the set of basic items, and taking into account
the typical ratings and value ratings relevant to the arte-
facts of interest, the designer first carries out selection,
which sets aside some subset, usually finite, of basic items
which are to guide the construction of the creative pro-
gram. We will call this set of basic items the inspiring set.
There is then a process of program construction, which
can be viewed as a mapping from the inspiring set (and
the relevant ratings schemes) to a program. This con-
struction will often be done informally by the human de-
signer/programmer, but could in principle be automated
in some way. We idealise the program as consisting of
a generating procedure (the main algorithm) and a def-
inition of the ranges of initial data values (the possible
parameters for the algorithm). The latter definition will
be a tuple of sets, each set being the range for one param-
eter to the generating procedure. (It would be possible to
decompose the generating procedure into a set of “rules”
and a “generating algorithm”, but that level of detail is not
needed here, though it might become necessary in some
more refined analysis). The generating procedure is then
a mapping which, given a tuple of initial data values, pro-
duces a set of basic items. To simplify matters, we will
assume that the generating procedure is total across all
the tuples of data which lie within the defined ranges, so
there is no question of invalid input values. We also as-
sume that running the program produces a set of basic
items, rather than a single item. (See Figure 1 for a sketch
of the overall scheme.)

Notation: We will use ‘P(X)’ to denote the powerset
of the set X.

Definition 5 Given a set of basic items B, a generat-
ing program for B consists of a pair (〈D1, . . . , Dk〉, G)
where 〈D1, . . . , Dk〉 is a k-tuple of sets, and G is a map-
ping from D1 × . . .×Dk to P(B)

In the above definition, each Di is the domain for
some parameter for the procedure G.

Definition 6
Given a value-based artefact class (B, typ, val), a pro-
gram construction scheme consists of a pair (SB, CB)
where SB, the selection process, is a mapping from
RAT (B)×RAT (B) toP(B), and CB, the construction
process, is a mapping fromP(B)×RAT (B)×RAT (B)
to the set of generating programs for B.

Hence, with the notation used in these definitions,
CB(SB(typ, val), typ, val) is a pair (〈D1, . . . , Dk〉, G)

BASIC ITEMS

SELECTION

INSPIRING SET

CONSTRUCTION

. PROCEDURE

INITIALISATION

INITIAL DATA RANGES

[0, 1]

typ

val

[0, 1]

typ

val

INITIAL DATA

RUN

RESULT SET[0, 1]

typ

val

Figure 1: Assumed framework for discussion

such that for 〈d1, . . . , dk〉 ∈ 〈D1, . . . , Dk〉, G(d1, . . . , dk) ∈
P(B).

In the next two definitions, we assume the concepts
and notation of the above definitions.

Definition 7 An initialisation is a mapping IB fromP(B)×
RAT (B) × RAT (B) to 〈D1, . . . , Dk〉. That is, it is a
choice of initial parameters, based on the inspiring set
SB(typ, val) and the ratings schemes typ, val.

Definition 8 For a program (〈D1, . . . , Dk〉, G), a run is
a pair (〈d1, . . . , dk〉, G(d1, . . . , dk)), where 〈d1, . . . , dk〉 ∈
D1 × . . . Dk.

5 Criteria for creativity

The various formal constructs set out above allow us to
state some criteria which could be applied in deciding
how creative a program is, or has been. We will define
these criteria for a single run of a program, and assume
that the generalisation to a set of runs should be straight-
forward. We do not consider the idea that the creativity
of a program can be considering independently of the sets
of results that it produces, i.e. the outputs from its runs.
At this early stage, we do not categorically state that all
these criteria are essential to an assessment of creativity;
rather, they are a first draft of a general catalogue of rele-
vant factors (see also Section 6 below).

In the formal criteria listed below, we assume a value-
based artefact class (B, typ, val), a selection process SB,
a construction process CB, an initialisation process IB, a
generating program (〈D1, . . . , Dk〉, G) for B, and a run
of this program (〈d1, . . . , dk〉, R) (where R is finite). It
should be possible to generalise these ideas to cover a set
or sequence of ‘runs’, so as to assess the creativity of a
program in general rather than a single run of that pro-
gram. That elaboration is not explored here.

For convenience, we employ the following notation:

Tα,β(X)
def
= {x ∈ X | α ≤ typ(x) ≤ β}: The subset of

X falling in a given range of normality.

Vα,β(X)
def
= {x ∈ X | α ≤ val(x) ≤ β}: The subset of

X falling in a given range of quality.

AV (F, X)
def
= (

∑
x∈X F (x)/ | X |): The average value

of a function F across finite set X .

ratio(X, Y)
def
= | X | / | Y |: The relative sizes of two

finite sets X, Y .

Consider appraising the output of a generating pro-
gram in isolation, without knowledge of the program’s
construction or internal workings. This is comparable to
the assessment which people routinely make of human-
created artefacts. The extent to which the program pro-
duces items which conform to the definition of the genre
(i.e. score highly on the typical properties) is relevant (see
Section 4.2). The average rating of items should be suit-
ably high:

Criterion 1 AV (typ, R) > θ, for suitable θ.

Also, highly rated (i.e. very typical) items should form
a significant proportion of the results:

Criterion 2 ratio(Tα,1(R), R) > θ, for suitable α, θ.

Notice that this in a sense conflicts with the Novelty
requirement from Section 2 above. As discussed in Sec-
tion 4.2, merely succeeding in conforming to the norms
of the chosen genre is an achievement for a computer pro-
gram. Branching out into producing untypical items – as

suggested by Novelty – is a more advanced level of cre-
ativity, which we will attempt to capture in further Crite-
ria, below.

Generated items should have intrinsic merit, on aver-
age:

Criterion 3 AV (val, R) > θ, for suitable θ.

Also, high quality items should make up a significant
proportion of the results:

Criterion 4 ratio(Vγ,1(R), R) > θ, for suitable γ, θ.

A program might be successful within the norms of
the genre, by having a high proportion of its “normal”
output scoring well:

Criterion 5 ratio(Vγ,1(R)∩Tα,1(R), Tα,1(R)) > θ, for
suitable α, γ, θ.

As Boden (1992) makes clear, a higher rating of cre-
ativity should be accorded to the production of artefacts
which do not conform closely to the norms of the genre,
but which nevertheless are rated highly when judged on
their merits. We can model this judgement by compar-
ing the set of untypical high-valued items with either the
entire set of outputs, the whole set of untypical items, or
the set of typical high-valued items. Each of these ratios
could constitute a criterion of creativity:

Criterion 6 ratio(Vγ,1(R) ∩ T0,β(R), R) > θ, for suit-
able β, γ, θ.

Criterion 7 ratio(Vγ,1(R)∩T0,β(R), T0,β(R)) > θ, for
suitable β, γ, θ.

Criterion 8 ratio(Vγ,1(R)∩T0,β(R), Vγ,1(R)∩Tα,1(R))
> θ, for suitable α, β, γ, θ.

A creative program might well replicate most of the
inspiring set SB(typ, val):

Criterion 9 ratio(SB(typ, val) ∩ R, SB(typ, val) > θ
for suitable θ.

Producing more than just the inspiring set is a symp-
tom of creativity:

Criterion 10 ratio(R, SB(typ, val) ∩ R) > θ, for suit-
able θ.

Results which are not in the inspiring set should be at
least typical of the genre, and better still highly-valued:

Criterion 11 AV (typ, (R−SB(typ, val))) > θ, for suit-
able θ.

Criterion 12 AV (val, (R−SB(typ, val))) > θ, for suit-
able θ.

Also, well rated items not in the inspiring set should
be a significant proportion of the results:

Criterion 13 ratio(Tα,1(R−SB(typ, val)), R) > θ, for
suitable α, θ.

Criterion 14 ratio(Vγ,1(R−SB(typ, val)), R) > θ, for
suitable γ, θ.

The relationship of the inspiring set to the program is
also of interest. This is less easy to formalise, because
the relevant issue is the extent to which human interven-
tion – the normal mechanism – is used. That is, each of
the SB, CB and IB mappings could be human-crafted or
automated; SB, and IB could be random. The creativity
of the program could be assessed according to these as-
pects, with human-crafting (probably) leading to a lower
evaluation.

6 Viewpoints

There are (at least) two respects in which subjectivity or
relativistic judgement enters into the assessment of cre-
ativity.

Firstly, the appraisal of the program’s output, mod-
elled here by the class-rating and the value-rating, are,
particularly in artistic fields, highly personal. This can be
modelled by having the two rating schemes (typ, val) act
as a formalisation of the judge’s viewpoint. That is, any
formal (or semi-formal) definitions of the quality of the
program results can be stated to be relative to the rating
schemes involved, and hence to the subjective view of a
particular judge.

Secondly, there is no consensus on what counts as cre-
ative, particularly when considering programs. A frame-
work such as the one outlined here allows for multiple
definitions of creativity (or definitions of different styles
or levels of creativity). As mentioned in Sections 4.2 and
5, for a computer to manage even to produce “normal” or
“typical” exemplars of a genre (thus scoring well on Cri-
teria 1 and 2) is a worthwhile task, but it is a different level
of achievement from producing highly-valued but untyp-
ical artefacts (Criteria 6, 7, 8). This emphasises that the
set of Criteria listed here should be considered as a reper-
toire from which one might draw. The fact that different
Criteria seem to lead in different directions with respect
to the underlying intuition about creativity is not a prob-
lem. Rather, one can define different variants by suitable
choices and combinations of criteria.

More formally, the various parameters α, β, γ, θ in the
above definitions are a source of flexibility. Also, what-
ever criteria are formally defined (those given above being
an illustrative set) can be put into different logical com-
binations, and various weights could be attached to them.
We could have what was described earlier as a weighted
rating scheme, but for judging the creativity of a program
(based on its origins and its output), rather than for as-
sessing the characteristics of the output.

If we could settle on a set of criteria such as those
listed in Section 5 above, then we could formally define

a creativity judgement system as being a set of values for
the various parameters involved (α, β, . . .). However, it is
premature to frame such a definition. We need to refine
our ideas about suitable criteria (and suitable parameters)
before attempting standardisation in this way.

7 Practicalities

The ideas presented here are metatheoretical, and are in-
tended to contribute to a methodological and philosoph-
ical debate. The natural question is: can any of this be
applied, in practice, to real programs? The answer is that
the full range of devices outlined in Section 5 above is
unlikely to be suitable for detailed assessment of all gen-
erating programs. Some of the criteria are more tractable
than others. In many cases, it should be feasible to com-
pute precise values for Criteria 1, 2, 3, 4, 5, 7, 8 for suit-
able values of the parameters (α, β, γ, θ). For example,
the output of the JAPE joke-generator was evaluated by
human judges against two standards: ‘is this item a joke?’
and ‘how funny is this item?’ (Binsted et al., 1997). These
correspond directly to the typical rating and the value rat-
ing of our framework, so (given the complete raw data
from that evaluation) these Criteria could be evaluated.

However, the way in which many programs are devel-
oped means that the ‘inspiring set’ is usually not recorded
or documented precisely, but typically forms part of the
informal, unstructured thinking that guides the design pro-
cess. Hence Criteria 9, 10, 11, 12, 13, 14 will often be
very hard to measure. These criteria merit inclusion in our
list nevertheless, as they make explicit and precise some
important standards which are often applied, albeit infor-
mally. Also, there will be cases where they can be com-
puted with great precision: when the construction process
CB is carried out by machine learning techniques of some
sort, the training set used could reasonably function as the
inspiring set.

8 Boden’s classification

Boden (1998) presents a classification of styles of creativ-
ity as manifested by computer programs, deriving from
her ‘conceptual space’ perspective (Section 3 above). (The
current paper began as an attempt to formalise this classi-
fication)

From a consideration of human and computational cre-
ativity, she offers three categories of computer creativ-
ity: combinational (‘novel (improbable) combinations of
familiar ideas’), exploratory (‘generation of novel ideas
by the exploration of structured conceptual spaces’), and
transformational (‘transformation of some (one or more)
dimension of the space so that new structures can be gen-
erated which could not have arisen before’).

Owing to the lack of formality and detail in Boden’s
presentation, it is not entirely clear how these forms are

distinguished. In particular, the distinction between com-
binational and exploratory is hard to pin down. Boden
cites the JAPE program (Binsted, 1996), which creates
riddles according to the various sets of rules which Bin-
sted programmed into it. In a sense, JAPE explores a
space of possibilities in a structured fashion, which seems
to be exploratory, but Boden offers it as an example of
combinational creativity, and contrasts this with a system
(Koning and J.Eizenberg, 1981) for generating possible
house designs (within a particular genre) according to a
shape-grammar, which she does regard as exploratory.

Boden uses the term ‘conceptual spaces’ when talk-
ing of ‘exploration’ or ‘transformation’, and says that a
program’s search space is a special case of a conceptual
space. Whether considering abstract conceptual space or
implemented search space, it is hard to see the evidence
for her claim that the AM program (Lenat, 1979) trans-
forms the space whereas the house-design program merely
explores it.

In terms of our formal constructs, exploratory creativ-
ity might be roughly characterised as a process in which:
(a) most of the items produced are within the norms of the
genre; (b) all the valuable items it produces are within the
norms of the genre. In the formal terms used above, (a)
would be Criterion 2, and (b) might be:

Vγ,1(R) ⊆ Tα,1(R) for suitable α, γ.

Transformational creativity seems to be a situation in
which the program produces a significant set of items with
a high value-rating and a low class-rating (Criterion 6,
above), but which would have a high class-rating accord-
ing to some (yet to be defined) rating scheme typ′ (with
associated T

′

x,y):

Vγ,1(R) ∩ T0,β(R) ⊆ T
′

α,1(R)

for suitable α, β, γ and T
′

x,y.

9 Possible extensions

The ideas presented here are rather tentative and prelim-
inary. There are a number of ways in which they could
be elaborated to capture more subtle aspects of creative
processing.

9.1 Program construction

It would be interesting to develop further the issue men-
tioned at the end of Section 5 above: how does the pro-
gram come into being, and what is its exact relationship
to the inspiring set?

9.2 Self-rating of output

Boden (1992, p.83) suggests that one facet of human cre-
ativity is an ability to recognise the worth of a created
entity. At a very crude level, we could allow for a gener-
ating program assigning some sort of rating to each item

that it produces, indicating the value that the program al-
locates to that item. Some programs (e.g. AM (Lenat,
1979)) include a mechanism of this sort. It should be rel-
atively straightforward to modify the formal definitions
given in Section 5 above to accommodate this form of
data. The amended criteria should then capture the intu-
itive idea that the program’s rating of its own output ought
(if the program is to be deemed creative) to have a high
correlation with either the typical ratings or the value rat-
ings or both.

9.3 Computations and traces

As noted above, Boden deems a program to be creative
only if it operates (internally) in a certain way. Colton
(personal communication) has suggested that if a program
run produces a set of output items which is highly-rated
(by typical and/or value ratings) in a relatively simple
manner, it should be regarded as more creative than a
comparable program run which is more laborious in pro-
ducing the same results. Although the framework here
concentrates on the external aspects of a program, and
deliberately leaves open the question of what computa-
tions count as inherently creative, it is conceivable that
the “elegance” or “simplicity” of the program’s delibera-
tions could be taken into account as one more factor in the
assessment of creativity. We would have to make changes
to the formal definitions given in Section 4.5 above. In
outline, we could do it in the following way (replacing
Definitions 5 above):

Definition 9 Given a set of basic items B, a generat-
ing program for B consists of a pair (〈D1, . . . , Dk〉, G)
where 〈D1, . . . , Dk〉 is a k-tuple of sets, and G is a map-
ping from D1×. . .×Dk to a pair (t, S), where S ∈ P(B)
and t is a trace.

Definition 8 could remain unaltered, but a ‘run’ would
now be a pair whose second component is itself a pair,
consisting of a trace and a result set. The result set would
continue to figure in the Criteria in the same way, indi-
cated by R as before.

Informally, a “trace” here is a representation of the
steps taken by the program. To make this fully rigorous,
we would need clear definitions of notions such as “pos-
sible set of operations” by a program and “instances of
operations”. A “trace” could be a sequence of instances
of operations, and a program would characterise a (possi-
bly infinite) set of possible traces.

The assessment of creativity would then depend not
only, as before, on two rating schemes for output items,
but would also include a simplicity metric which was de-
fined to map ‘trace’ structures to the interval [0,1].

This would admit, in a relatively limited manner, one
further factor (simplicity of derivation) into our way of
appraising creativity. It would not concede Boden’s (ap-
parent) claim that we can make the manner in which the

generating program operates a necessary condition for a
verdict of “creative”.

9.4 Random generation

Since the formalisation in Section 4 above says little about
how artefacts are generated, there is a sense in which it
does not exclude the random production of basic items.
However, the level of abstraction of the framework means
that it has no way to distinguish random generation from
any other approach. Although random generation is not a
hugely interesting case from an AI point of view, it might,
in certain discussions, be an interesting yardstick for com-
parison purposes. To allow explicit formal comparisons,
we would need a more detailed definition of the avail-
able space of basic items and how this space could be
randomly explored. One way to do that might be to de-
compose the notion of ‘basic item’ so as to make explicit
the internal structure of an item (e.g. as an array of pixels,
or as a sequence of words). The other requirement would
be a suitable definition of “random combination of atomic
parts”.

9.5 User guidance

The framework does allow at least a rough characterisa-
tion of the situation where a program is “tuned” to pro-
duce certain data. That would be defined as a case where
the inspiring set and the result set are identical, or al-
most so. Such a scenario might be rated poorly in cre-
ative terms (it would score badly on Criteria 10, and, a
fortiori, on Criteria 13 and 14), but it could still be inter-
esting from a research point of view, since it might well
demonstrate, and test by implementation, a mechanistic
route from very simple data to interestingly complex out-
put. (As remarked by Ritchie and Hanna (1984), even
if Lenat’s AM had been designed specifically to com-
pute particular mathematical concepts from a small set of
primitives, that would be interesting, even if it might be
less highly rated for creativity.)

What is not describable in our formalisation is the sit-
uation where a user intervenes during the running of the
program, using knowledge of what the program has al-
ready done in order to guide it in particular directions. To
make explicit statements about this kind of activity, the
process of computation would have to made explicit (cf.
comments in Section 9.3 above).

9.6 Similarity

An important weakness of the framework is that it does
not handle the notion of similarity very cleanly. The Nov-
elty standard of Section 2 is covered only indirectly and
partially. It would be interesting to develop the idea men-
tioned in Section 4.3 above, by building some notion of
multi-dimensional space into the assessment framework.
Not only might this connect to some of Boden’s ideas, it

would allow the notion of similarity to be addressed more
directly. In particular, the present set of Criteria compare
the result set with the inspiring set only in terms of overlap
in membership, but make no allowance for the (probably
pertinent) idea that output items could vary in the extent
to which they are similar to those in the inspiring set.

10 Conclusion

We have proposed an approach to the assessment of cre-
ativity (in programs) which:

(a) leaves open the question of which mechanisms might
lead to creativity;

(b) provides a general sketch of what might constitute
a creative program;

(c) highlights various factors which are relevant to an
empirical judgement of creativity (about a program);

(d) is explicit and formal about these factors;

(e) allows for “subjectivity”, i.e. variations in the crite-
ria used to judge the output items;

(f) allows for “relativity”, i.e. variations in the criteria
used to define creativity.

These proposals are very preliminary; Section 9 lists
just some of the ways in which they could be improved.
We hope that this framework will clarify the discussion,
and may lead to a sounder basis for attributing creativity
to programs.

Acknowledgements

I would like to thank Geraint Wiggins and Simon Colton
for discussions of some of these ideas.

References

Kim Binsted. Machine humour: An implemented model
of puns. PhD thesis, University of Edinburgh, Edin-
burgh, Scotland, October 1996.

Kim Binsted, Helen Pain, and Graeme Ritchie. Chil-
dren’s evaluation of computer-generated punning rid-
dles. Pragmatics and Cognition, 5(2):309–358, 1997.

Margaret A. Boden. The Creative Mind. Abacus, London,
1992.

Margaret A. Boden. Creativity and Artificial Intelligence.
Artificial Intelligence, 103:347–356, 1998.

Lynne Cahill, Christy Doran, Roger Evans, Daniel Paiva
Chris Mellish, Mike Reape, Donia Scott, and Neil Tip-
per. In search of a reference architecture for nlg sys-
tems. In European Workshop on Natural Language
Generation, Toulouse, 1999.

Simon Colton, Alan Bundy, and Toby Walsh. Agent based
cooperative theory formation in pure mathematics. In
G. Wiggins, editor, Proceedings of AISB 2000 Sympo-
sium on Creative and Cultural Aspects and Applica-
tions of AI and Cognitive Science, pages 11–18, Birm-
ingham, UK, April 2000.

H. Koning and J.Eizenberg. The language of the prairie:
Frank Lloyd Wright’s prairie houses. Environment and
Planning B, 8:295–323, 1981.

D.B. Lenat. On automated scientific theory formation: a
case study using the AM program. In Hayes, Michie,
and Mikulich, editors, Machine Intelligence 9, pages
251–283. Ellis Horwood, Chichester, 1979.

G. D. Ritchie and F. K. Hanna. AM : A case study in
ai methodology. Artificial Intelligence, 23:249–268,
1984.

Graham Steel, Simon Colton, Alan Bundy, and Toby
Walsh. Cross-domain mathematical concept formation.
In G. Wiggins, editor, Proceedings of AISB 2000 Sym-
posium on Creative and Cultural Aspects and Applica-
tions of AI and Cognitive Science, pages 3–10, Birm-
ingham, UK, April 2000.

