
Denotational Semantics for Agent Communication Languages
Frank Guerin and Jeremy Pitt
Intelligent and Interactive Systems

Department of Electrical & Electronic Engineering,
Imperial College of Science, Technology & Medicine,

Exhibition Road, London, SW7 2BZ.
+44 20 7594 6331

{f.guerin,j.pitt}@ic.ac.uk
ABSTRACT
The dilemma encountered in the design of an agent
communication language (ACL) for an open society is that it
should be based on externally observable phenomena yet it should
capture something of the intuitions behind the high level
abstractions typically found in internal mental states. Our solution
treats an ACL message as a declarative statement that is given a
procedural interpretation by a denotational semantics. This
defines a speech act as a function between states. These states are
social states which store public information including expressed
mental attitudes and control variables. Expressed mental attitudes
are externally observable and capture the conventional public
meaning of communication. The variables control the flow of
conversation in a protocol. We conclude firstly that since the
denotational semantics is based on externally observable
phenomena, it is possible to verify compliance and prove
properties of protocols. Secondly, since the semantics is more
expressive than behavioural specifications, it lays the foundation
for high-level communication between intelligent agents.

1. INTRODUCTION
We are concerned with specifying communication languages for
agents in an open society. In such systems the internal states of
agents are not accessible so the semantic definition should be
based on externally observable phenomena. This poses problems
for semantics based on declarative statements about mental states.
In previous work [1], we analysed an auction protocol based on a
procedural approach, using expected replies for external semantics
and further specifications for decision-making based on state
variables and mental attitudes. This work revealed firstly the
existence of a richer state description commonly known to all
agents participating in the auction, which was changed by their
speech acts. Secondly, the speech acts had consequences beyond
just the intended replies. Agents were publicly committed to
certain other acts (auctioneer commits to sell, bidder commits to
buy). However, these state variables and commitments were
specified in the logical specification of the protocol and not
accommodated in the general semantic framework. This paper
shifts all the public knowledge into an external semantics for
agent communication. It therefore advances the semantic
framework while being complementary to and consistent with our

work on intentional specifications of internals. We treat an ACL
message as a declarative statement that is given a procedural
interpretation by means of denotational semantic evaluations. We
introduce the notion of expressed mental attitudes which are
externally observable and capture the conventional public
meaning of communication. We define a social state which holds
all public information and is explicitly modified by the semantic
definitions of speech acts. The social state stores propositions and
control variables and defines commitments for future acts.
We begin with an analysis of the chief problems with existing
ACLs and list some desiderata. We then describe our semantic
framework. This is followed by the formal semantics of the
framework which includes an auction protocol specification.
Finally we evaluate the framework and outline areas for further
research. Since the formal semantics are based on externally
observable phenomena, it is possible to verify compliance and
prove properties such as the possible outcomes of protocols.
Furthermore, since the semantics is more expressive than
behavioural specifications, it lays the foundation for intelligent
communication between agents in the long term.

2. PROBLEMS AND REQUIREMENTS
Agent communication languages (ACLs) are typically designed by
either a procedural or declarative approach [4]. In the procedural
approach agents exchange procedural directives, a message
defines the appropriate response from the recipient. Behaviour
based approaches extend this to larger sections of conversation,
identifying certain patterns of communication (auction, contract-
net, negotiation) that arise in many situations and designing
protocols for them. Speech acts are given a behavioural meaning
in the context of a conversation in that only certain responses are
appropriate at any stage of a conversation. Procedural
communication languages are more oriented toward computer
implementation, but there are some difficulties:
1. Behavioural meanings are low level and are more appropriate

for computational entities which lack the rationality to plan
their own behaviour. Multiagent systems are supposed to
provide higher level abstractions than traditional distributed
programming [8].

2. If the protocol is the unit of communication and speech acts
are defined only in terms of possible replies then
communication becomes an ordered exchange of meaningless
tokens and the language is not sufficiently expressive.

3. By specifying exactly how a speech act should be used in a
conversation there is a lack of flexibility to use it in different
situations and one needs a library of predefined protocols to
handle every possible conversation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AGENTS’01, May 28-June 1, 2001, Montréal, Québec, Canada.
Copyright 2001 ACM 1-58113-326-X/01/0005…$5.00.

497

For example, if the meaning of request is defined behaviourally as
an intention to reply with agree or refuse, then a helpful
intelligent agent could not suggest an alternative source in
response to a request for a service it is incapable of providing. To
enable such cooperation, the semantics of request should capture
the intuitive meaning i.e. the requestor expresses a desire. The
behaviour based approach is adequate for simple reactive agents,
but a more meaningful semantics is vital for rational agents to be
able to plan their communications intelligently.
The declarative approach is akin to natural language.
Communicative acts are given a meaning compatible with human
intuitions and agents are expected to have a sufficiently advanced
level of rationality to interpret received acts and plan new acts.
The semantics of acts is typically specified in terms of mental
attitudes of participants [2],[5] (also called intentional semantics).
Such languages are expressive but have the following drawbacks:
1. It is difficult to verify compliance with a semantics which is

based on internal states if the internal states are inaccessible.
2. An agent’s autonomy is limited. The example most frequently

cited [8] is the inability of FIPA [2] agents to operate in a
setting where sincerity cannot be taken for granted.

3. Meaning is specific to a certain mental state thus the speech
acts are not flexible for use in a different context. Ideally the
meaning of an act should depend on the context.

4. It is not clear how the agent’s reasoning should be designed so
that desired behaviour results, especially when protocol
specification is attempted. Many such languages specify
protocols without considering the speech act semantics [2].

A significant advancement to the declarative approach is
presented in Singh [7], where semantics are declarative,
describing social commitments which are externally observable
thus making verification possible.
To summarise, the semantic definition of an ACL should have the
following features:
1. Formal definition. If it is specified informally, with a natural

language description, it is possible that different vendors will
take different interpretations of the specification and produce
agents which cannot interoperate.

2. Verifying compliance with the semantics should be possible.
3. State what a speech act means rather than how it should be

used. This makes the language more expressive and makes
speech acts flexible so they can be used in different contexts.

4. Intuitive or human-like semantics. To facilitate high level
communication for intelligent agents.

5. Context dependence. The context in which a speech act is
uttered should be a factor in determining its meaning.

6. Based on conventional meaning (public perspective) rather
than the inferences of an individual (private perspective).

7. Design Autonomy. Compliant agents should not be forced to
adopt a certain architecture, e.g. they should not be forced to
have an explicit representation of beliefs, desires or intentions.

8. Consideration of the social aspects of communication and the
perspective of the society of agents. It should be possible to
specify (observable) commitments to actions.

An ACL should also have a formal protocol description language
which can cope with multi-party protocols, nested protocols,
parallel conversations and different agent roles within a
conversation. There should be a precise relationship between the
semantics of protocols and the semantics of the speech acts of
which it is composed. We address these issues in the next section.

3. SEMANTIC FRAMEWORK
An ACL message is treated as a declarative statement that is given
a procedural interpretation by means of denotational semantic
evaluations. We define a speech act as a function from context
onto context [3]. Hamblin (cited in Gazdar [3]) suggests that the
context can take the form of a list of propositions representing
commitments. We extend this to include propositions representing
expressed mental attitudes, control variables for the conversation
and the history of speech acts. We distinguish between an agent’s
publicly expressed mental attitudes and its personal internal
mental attitudes. These can be different (if agents are not sincere).
For example, an agent may express a desire to have an action
performed (when it does have that desire in its internal state) in
order to test the willingness of another agent to comply. This
means that an agent does not need to hold a mental attitude as a
precondition to expressing it. Thus meanings are specified from a
public perspective, rather than the private perspective of a single
individual whose personal inferences are subjective. This public
meaning together with social relations captures the conventional
meaning of acts within the society.

Denotational
Semantic

Evaluation
Functions

Agent’s Communication
Code

(The Language Function)
 Speech-Act →→→→ Social State
 →→→→ Social State

A, inform P

A has expressed

belief that P

ACL Specification

Speech-Act

Initial
Social State

Joe, inform
“it is raining”

Resultant Social State
Joe has expressed the belief

that it is raining

Domain Constraints
Social State →→→→ Social State

Social State

Figure 1 Communication Model

3.1 Public Information
We represent the context as a social state which is used to hold
information that is externally visible and known to all participants
in a social interaction. Within the social state is the state of
persistent social relations (dealing with long term commitments
for example) and the conversation states (dealing with all public
information relating to the current conversations). Each
conversation state can be further broken down into a set of

498

(1)variables and (2)propositions describing the conversation, a set
of (3)contingent social relations and the (4)history of speech acts in
the conversation. We distinguish between contingent and
persistent social relations as follows: contingent relations are
solely concerned with the permissions and obligations (to perform
subsequent speech acts in the current conversation) that arise as a
result of the current conversation state. Each agent keeps a copy
of the social state and updates it as speech acts are sent and
received (both sender and receiver change state). The
conversation variables and propositions control the conversation,
although they are labelled with beliefs, desires and intentions,
they need not have any direct relationship with the internal states
of the participants. The use of intentional labels makes the state
description more intuitive for the agent designer. Agents play
certain roles in a conversation and these roles may define
permissions and obligations at any point in the protocol.
Conversation variables keep track of which agents occupy which
roles at any time during the conversation.
As shown in Figure 1, The ACL specification is treated like a
computer program which is turned into a function (compiled) by
the denotational semantics. The function maps a speech act to a
change in the state of the society. The ACL specification has three
parts: (1)the Converse Function gives permissions and obligations
for subsequent speech acts based on the current conversation
state; (2)the Protocol Semantics gives the meanings of speech acts
in context of the current protocol and (3)the Speech-Act Semantics
gives the protocol independent elements of meaning. For example,
announcing may have a protocol independent meaning which
makes some fact public as well as an additional meaning which
depends on whether it is used in an auction or a negotiation.
Protocol specific meanings may override the speech act semantics.
These three functions are incorporated in the language function.
The language function matches incoming speech acts with the
correct conversation state (based on the conversation identifier
parameter) and updates the history in that state.
We do not define the appropriate replies to an act along with the
semantics of the act. We consider the separation between the
converse function and the semantic function to be important since
the determination of the possible replies to an act may not depend
on that act alone, but also on the history of previous acts.
Domain constraints further modify the social state. For example,
we could specify for some domain that if an agent A expresses a
desire for an agent B to perform an action, then the agent B is
obliged to do it. Domain constraints are external to the ACL
specification, this allows for the same ACL to be used in different
domains with different constraints. These rules could appear in
the converse function or in the specification of protocols, but this
would lead to a specification which is locked in context.

3.2 Private Information
The ACL specification describes how the social state is to change
as a result of speech acts and thereby defines the permissions and
obligations for participants to perform subsequent acts. It remains
to describe how the agents update their internal information states
and how they select the next act to perform. Agents in a
heterogeneous system may be implemented in diverse ways and
may not even have an explicit representation of desires and
intentions, therefore the description here is purely informative.
The internal code of the agent can be implemented as two
functions: (1)The add function has as inputs the internal state,

String Lists
Domain l ∈ String-List = String → Tr
Operations
 newlist : variables
 newlist = λs.false
 checklist : String → String-List → Tr
 checklist = λs.λl.l(s)
 updatelist : String → String-List → String-List
 updatelist = λs.λl.[s atrue]l

Variables
Domain v ∈ variables = Id → (Nat + String)
Operations
 newvars : variables
 newvars = λi.(one,”null”)
 access : Id → variables → (Nat + String)
 access = λi.λv.v(i)
 update : Id → (Nat + String) → variables → variables
 update = λi.λn.λv.[i an]v

History
Domain v ∈ History = seq → Speech-Act
Operations
 newHistory : History
 newHistory = λi.(null,null,null,null,null)
 accessHistory : seq → History → Speech-Act
 accessHistory = λi.λv.v(i)
 updateHistory : seq → Speech-Act → History
 updateHistory = λi.λn.λv.[i an]v

Conversation State
Domain s ∈ Conversation-State
 = variables × String-List × String-List × History
Operations
 newconversation: Conversation-State
 newconversation = (newvars, newlist, newlist, newHistory)

Speech Act
Domain a ∈ Speech-Act =
 Name × Name × perf × content × cid × seq

Cases of Speech Acts
Domain c ∈ Speechactcase =
 Speech-Act → Conversation-State→ Conversation-State
Operations
 nostatechange : Speechactcase
 nostatechange = λa. λs. s
 errorstate : Speechactcase
 errorstate = λa. λs.(error, error)

Figure 2 Semantic Algebras
social state and speech act and outputs a new internal state. This
function updates the agent’s mental state when a speech act
arrives. (2)The select function has as inputs the social state and the
internal state and outputs a new internal state. The agent reasons
about what acts to perform next and adds them to the its
intentions, obviously the permissions and obligations defined in
the social state should be a major factor in determining the output
if the agent wishes to be ACL compliant. The add and select
functions are implemented after the public information is updated.

499

3.3 Development Method
The expressive power of natural language is achieved through
words or phrases that can take different meanings depending on
the context in which they are uttered. This gives flexibility to each
natural language word or phrase, and an economy to the number
of words needed. Meaning is built from a group of words or
phrases in a particular order and in a particular pragmatic context,
rather than from a single all-meaningful performative. This
concept of building complex meaning from simple building
blocks is what we would like to borrow from natural language.
Our ACL building blocks are (1)speech act specification,
(2)protocol specification (via protocol semantics and converse
functions) and (3)domain constraints. The speech acts themselves
should carry as much useful meaning as possible, while still being
flexible, so as they lend themselves to use in many different
scenarios. They should not be specific to one protocol, one
domain or one ACL. This design philosophy follows through in
all specifications, for example, domain specific aspects should be
kept out of protocol specifications. The specifications for generic
speech acts and protocols can be published. An ACL can then be
developed by downloading speech acts and protocols, and if
necessary, designing new ones. ACL specifications can be
published for designers and also so that foreign agents can
compile them into code.

4. DENOTATIONAL SEMANTICS
We now present a method for defining the language function
precisely. Essentially we treat propositions in the social state as
strings and define a language function mapping a speech act onto
a state change. We follow the notation of Schmidt [6] where a
function f is written with the lambda calculus abstraction λa.e and
the function argument appears after the function. To evaluate the
function, the argument replaces occurrences of a in e. For
example if f(y) = y2 then we write f = λa.a2 and f(y) = λa.a2 y. If f
is a function, then [x a y]f denotes the function that maps x to y,
but behaves exactly like f for any other argument. ↓i denotes the
operation such that (a1, a2,…., an)↓i = ai. Let a → b � c take the
value b if a is true, or c if a is false. For x∈R and y∈S, we tag the
members of each set so they can be distinguished: inR(x) =
(zero,x) and inS(y) = (one,y). To remove the tags for any m∈R+S,
the expression:
 cases m of isR(x)→ f(x) � isS(y)→ g(y) end
evaluates to f(x) when m=(zero, x) and evaluates to g(y) when
m=(one, y). (a strequals b) returns true if a and b are identical
strings and cons concatenates strings. For brevity, we omit the
abstract syntax definitions and the standard semantic algebras for
truth values, strings, etc. Many of the trivial evaluation functions
dealing with low-level string manipulations are omitted. We first
present a simplified version of the semantics and illustrate how it
works with a simple ACL containing a single speech act which is
not part of any protocol. We then move on to the complete
semantics and animate an ACL containing an auction protocol.

4.1 Simplified Definition (Speech Acts Only)
We wish to define the language function as a mapping from
speech act to state to state. Therefore we must first define the
domains for speech acts and states, see Figure 2. The domains
(1)seq, (2)Name, (3)perf, (4)content and (5)cid are domains of
(1)sequence numbers for conversations, (2)agent names,
(3)performative names, (4)message contents and (5)conversation

identifiers respectively. A speech act has six parts: sender,
receiver, performative, content, conversation identifier and
sequence number within this conversation. The conversation state
has four parts: (1) variables (string or numerical values) which may
define roles or other relevant information for the execution of a
conversation, (2)expressions describing the mental attitudes
expressed by speakers (treated as strings), (3)contingent social
relations (described in section 3.1) and (4)the conversation history.
The speechactcase domain is necessary to handle more than one
speech act as will be seen in section 4.1.3. In the simplified
version of the evaluation functions (Figure 3) we only consider
the speech act’s effect on the conversation state with no protocol.

L: Language →
Speech-Act → Conversation-State → Conversation-State
L[[speech-act-semantics S]] = S[[S]] nostatechange

S: Speech-Act-Semantics → Speechactcase → Speechactcase
S[[S1; S2]] = λc. S[[S2]] (S[[S1]]c)
S[[[F] M]] = λc. λa. λq. a↓3 strequals F[[[F]]]
 → M[[M]] a q � c a q

M: Semantics →
Speech-Act → Conversation-State → Conversation-State
M[[M1; M2]] = λa. λq. M[[M2]] a (M[[M1]] a q)
M[[R]] = λa. λq. (q↓1, updatelist (R[[R]]a) q↓2, q↓3, q↓4)

R: Proposition → Speech-Act → String
R[[X R]] = λa. (X[[X]]a) cons (R[[R]]a)
R[[C]] = λa. a↓4

X: Proposition → Speech-Act → String
X[[Y Z]] = λa. Y[[Y]] cons (Z[[Z]]a)

Y: Modality → String
Y[[believe]] = B Y[[desire]] = D
Y[[intend]] = I Y[[know]] = K

Z: Actor → Speech-Act → String
Z[[R]] = λa. a↓2 Z[[S]] = λa. a↓1

F[[[F]]] simply maps the speech act name to its denotable value

Figure 3 Simplified version of the valuation functions.

4.1.1 Evaluation of a simple ACL
We now evaluate l1, a sample fragment of an ACL which has only
one speech act (query) and no protocols, see Figure 4. This
defines the semantics of a query as the sender’s expression of a
desire to know if the receiver believes the content. We want to be
able to turn this ACL into a function from a speech act to a
change in conversation state. If the performative of the incoming
speech act matches the one in our ACL (query), then our function
should add the sender’s expressed desire to the state.

speech-act-semantics

[query]

desire S know S believe R C

Figure 4 Specification of a simple ACL.
Applying the L valuation function to l1 we have:

L[[l1]]= S[[s1]] nostatechange

500

Where s1 =[query] desire S know S believe R C

S[[s1]]=λc.λa.λq.a↓3 strequals F[[[f1]]]→ M[[m1]] a q � c a q
Where m1 = desire S know S believe R C,
and f1 = query

F[[[query]]] = query

M[[m1]] = λa. λq. (q↓1, updatelist (R[[r1]]a) q↓2, q↓3, q↓4)
Where r1 = m1 = desire S know S believe R C

All that remains is to simplify R[[r1]] :
R[[r1]] = R[[desire S know S believe R C]]

 = λa. (X[[desire S]]a)
 cons (R[[know S believe R C]]a)

 = λa. (X[[desire S]]a) cons (λa'. (X[[know S]]a')
 cons (R[[believe R C]]a') a)

 = λa. (X[[desire S]]a) cons (λa'. (X[[know S]]a')
 cons (λa2. (X[[believe R]]a2) cons (R[[C]]a2)
 a') a)

X[[desire S]] = λa. Y[[desire]] cons (Z[[S]]a)
 = λa. D cons ((λa'. a'↓1) a)
 = λa. D cons a↓1
and similarly for the other X valuations. Note that superscripts are
used merely to distinguish between separate identifiers
represented by the same letter in nested abstractions.

R[[C]]a = λa. a↓4
The full valuation of r1 is :

R[[r1]]
=λa. (λa'. D cons a'↓1 a)
 cons (λa'. (λa2. K cons a2↓1 a')
 cons (λa2. (λa3. B cons a3↓2 a2)
 cons (λa3. a3↓4 a2)
 a')
 a)

=λa.D cons a↓1 cons K cons a↓1 cons B cons a↓2 cons a↓4
R is a function from speech act to string, effectively it takes the
speech act a and puts the sender, receiver and content in the right
places in the string. This completes the denotation of l1.

4.1.2 Testing sample speech act inputs:
L[[l1]] is a function, given a speech act and conversation state, it
returns the new conversation state. Looking inside L[[l1]] we find
S[[s1]], which is a function of Speechactcase onto Speechactcase.
We see that if the performative of the speech act input to L[[l1]] is
anything other than query, the returned Speechactcase is
nostatechange and hence the returned state is the same as the
original:

L[[l1]] =λc.λa.λq.(a↓3 strequals F[[[query]]] →
 M[[m1]] a q � c a q) nostatechange

 =λa. λq. (a↓3 strequals F[[[query]]] →
 M[[m1]] a q � nostatechange a q)

 =λa. λq. (a↓3 strequals F[[[query]]] →
 M[[m1]] a q � λa'. λs'. s' a q)

Let a1 be a speech act with a performative which is not query:

L[[l1]] a1 = λa. λq. (a↓3 strequals F[[[query]]] →
 M[[m1]] a q � λa'. λs'. s' a q) a1
 = λq. (a1↓3 strequals F[[[query]]] → M[[m1]]
 a1 q � λa'. λs'. s' a1 q)
 = λq. (λa'. λs'. s' a1 q)
 = λq. (q)

This is a mapping from conversation state to conversation state
which leaves the state unchanged. Now consider a speech act
a2=(sender2, receiver2, query, content2, id2) :

L[[l1]]a2 = λa. λq. (a↓3 strequals F[[[query]]] →
 M[[m1]] a q � λa'. λs'. s' a q) a2

 = λq. (a2↓3 strequals F[[[query]]] →
 M[[m1]] a2 q � λa'. λs'. s' a2 q)
 = λq. (M[[m1]] a2 q)
 = λq. (λa'. λq'.
 (q'↓1, updatelist (R[[r1]]a') q'↓2 a2 q, q↓3, q↓4)
 = λq. (q↓1, updatelist (R[[r1]] a2) q↓2 , q↓3, q↓4)
R[[r1]] a2 = D cons (a2↓1) cons K cons (a2↓1)
 cons B cons (a2↓2) cons (a2↓4)
 = D sender2 K sender2 B receiver2 content2

Let us call this string string2

L[[l1]] a2 =λq. (q↓1, updatelist string2 q↓2, q↓3, q↓4)
This is a function from conversation state to state which adds the
proposition contained in string2 to the state (as desired).

4.1.3 The evaluation of two or more speech acts
Note how S handles semantics for two speech acts:

L[[speech-act-semantics S1; S2]]
 = S[[S1; S2]] nostatechange
 = λc. S[[S2]] (S[[S1]]c) nostatechange
 = S[[S2]] (S[[S1]] nostatechange)
 = S[[S2]] (λc. λa. λq. a↓3 strequals F[[[f1]]] → M[[m1]] a q
 � c a q nostatechange)

Where f1 and m1 are the performative name and semantics of S1.

 = S[[S2]] (λa. λq. a↓3 strequals F[[[f1]]] → M[[m1]] a q
 � nostatechange a q)

 = λc. λa. λq. a↓3 strequals F[[[f2]]] → M[[m2]] a q � c a q
 (λa'. λq'. a'↓3 strequals F[[[f1]]] → M[[m1]] a' q'
 � nostatechange a' q')

 = λa. λq. a↓3 strequals F[[[f2]]] → M[[m2]] a q �
 (λa'. λq'. a'↓3 strequals F[[[f1]]] → M[[m1]] a' q'
 � nostatechange a' q') a q

The functionality of this expression is:

Speech-Act → Conversation-State → Conversation-State

Consider an incoming speech act a1. If the performative name of
this incoming act matches f2, we get :

λa. λq. (a↓3 strequals F[[[f2]]] → M[[m2]] a q �…..) a q a1

= λq. M[[m2]] a1 q

501

i.e. the state change defined by semantics m2 when a1 is the speech
act. If the performative name does not match f2, we get :

λq. (a1↓3= F[[[f2]]] → M[[m2]] a1 q �
 (λa'. λq'. a'↓3 strequals F[[[f1]]] → M[[m1]] a' q'
 � nostatechange a' q') a1 q)

=λq. ((λa'. λq'. a'↓3 strequals F[[[f1]]] → M[[m1]] a' q'
 � nostatechange a' q') a1 q)

=λq. (a1 ↓3 strequals F[[[f1]]] → M[[m1]] a1 q
 � nostatechange a1 q)

Which checks whether or not the performative name matches f1, if
it does we get :

λq. M[[m1]] a1 q

i.e. the state change defined by semantics m1 when a1 is the speech
act. Otherwise we get :

λq. (nostatechange a1 q) =λq. (λa. λs. s a1 q) =λq. (q)

This function leaves the state unchanged. The denotation of the
semantics for three or more acts can proceed in a similar fashion.
The semantic function S effectively passes on the parameters to
the next nesting of the function if the speech act doesn’t match.

Persistent Social Relations
Domain v ∈ Persistent-Soc-Rel = String-List
Operations
 newpersistentsocrel: Persistent-Soc-Rel
 newpersistentsocrel = newlist

Conversation Array
Domain a ∈ Conv-Array = cid→ Conversation-State
Operations
 newArray: Conv-Array
 newArray = λi.newconversation
 accessArray : cid → Conv-Array → Conversation-State
 accessArray = λi.λa.a(i)
 updateArray : Id → Conversation-State →
 Conv-Array → Conv-Array
 updateArray = λi.λc.λa.[i ac]a

Social State
Domain s ∈ Social-State = Persistent-Soc-Rel × Conv-Array
Operations
 newsocial: Social-State
 newsocial = (newpersistentsocrel, newArray)

Current Social State
Domain s ∈ Cur-Social-State =
 Persistent-Soc-Rel × Conversation-State

Cases of Speech Acts
Domain c ∈ Speechactcase =
 Speech-Act → Cur-Social-State→ Cur-Social-State
Operations
 nostatechange : Speechactcase
 nostatechange = λa. λs. s
 errorstate : Speechactcase
 errorstate = λa. λs.(error, error)

Figure 5 Additional semantic algebras.

4.2 Complete Definition
The additional semantic algebras are shown in Figure 5. We now
have a new structure: the Social-State as described in section 3.1,
it contains a dynamic array of conversation states where the
speech act’s cid selects the current conversation. In the evaluation
of the language (Figure 6 – only the more important valuation
functions are included) we have replaced the Conversation-State
with the Social-State. We have also added the converse function,
it is a Conversation-State to Conversation-State mapping and it
looks at the input state to determine the updated contingent social
relations for the output state. The converse function is
incorporated in the L evaluation function so that contingent social
relations are updated after the semantic functions are processed.
The converse function can also stand alone, and this is used if an
agent is initiating a new protocol, in which case a state containing
only the protocol variable and the string “initiator” is passed into
the function and the appropriate initial speech acts are returned.

L: Language → Speech-Act → Social-State → Social-State
L[[converse-function C protocol-semantics P
speech-act-semantics S]] = λa. λq.
let z = (P[[P]] proterrstate a ((S[[S]] nostatechange) a
 (q↓1, accessArray a↓5 q↓2)))
in let y = C[[C]] (z↓1,(z↓2↓1, z↓2↓2, newlist, updateHistory
 a a↓6 z↓2↓4))
in let x = (y↓1, updateArray a↓5 y) in
 q↓2↓3 (“obliged “ cons F[[a↓1]] cons F[[a↓3]]
 cons ”(“ cons F[[a↓2]] cons “)”) → x
 □ (q↓2↓3 (“permitted “ cons F[[a↓1]] cons
 F[[a↓3]] cons ”(“ cons F[[a↓2]] cons “)”) → x
 □ (q↓1, updateArray a↓5
 (update violator a↓1 q↓2↓1, updatelist “violation”
 q↓2↓2, newlist, updateHistory a a↓6 z↓2↓4)))

P: Protocol-Semantics → Speechactcase → Speechactcase
P[[P1; P2]] = λ p. P[[P2]] (P[[P1]]p)
P[[[T] S]] = λp. λa. λq. cases (access “protocol” q↓2↓1) of
 (isString(x)→x � isNat(y)→ error) end
 strequals T[[[T]]] → S[[S]] errorstate a q � p a q

C: Converse-Function → Cur-Social-State⊥ → Cur-Social-State⊥
C[[C1; C2]] = λ q. C[[C2]] (C[[C1]]q)
C[[[T] O]] = λq. cases (access “protocol” q↓2↓1) of
 (isString(x)→x � isNat(y)→ error) end
 strequals T[[[T]]] → O[[O]]q � q

Figure 6 Updated and additional evaluation functions.

4.3 Specifying an ACL with auction protocol
This is an English auction protocol, the price is increased at each
iteration until no more bidders are prepared to bid, the last
successful bidder being the winner. We use only three speech acts.
The main iteration consists of an (1)announce of the new price
from auctioneer to bidders, and an (2)accept of a price from bidder
to auctioneer. The auction terminates with a (3)declare from
auctioneer to all participants. There are three roles, a member of
the role (1)Bidder becomes (2)Buyer when its accept causes the
(3)Auctioneer’s next announce. We assume there is a commonly
agreed global timer variable that can be referred to in any
conversation.

502

converse-function
[auction]
Initiator:
announce(#Bidder,{protocol=auction,
 item=#item,price=#price,timeout=#timeout});
if #time>#timer then obliged #Auctioneer,
 declare (#Bidder U #Buyer,null);
if intend Auctioneer Auctioneer,sell
 (#item,member of #Bidder,>=#startprice)
 then permitted #Bidder,
 accept(#Auctioneer U #Bidder U #Buyer);
if intend #Buyer
 #Buyer,Buy(#item,#Auctioneer,#price) then
 obliged #Auctioneer, announce(#Bidder U
 #Buyer, price=#price+#increment));
protocol-semantics
[auction]
[announce]
timer:=#time+#timeout;
if #Auctioneer=null then
 (Auctioneer:=S;Bidder:=R);
intend #Auctioneer #Auctioneer,sell
 (#item,member of #Bidder,>=#price);
intend #Auctioneer #Auctioneer,
 (wait(#timeout) then declare (#Bidder U
 #Buyer,{protocol=auction,item=#item,
 price=#price,timeout=#timeout}))
proposal=Buy(#item,#Auctioneer,#price);
desire #Auctioneer know #Auctioneer
 intend #Bidder #proposal
[accept]
if #Buyer!=null then not intend #Buyer
 #Buyer,Buy(#item,#Auctioneer,#price);
Bidder:= #Bidder U #Buyer;Buyer:= S;
Bidder:= #Bidder \ S;oldprice:=#price;
[declare]
p.obliged #Buyer,buy(#item,S,#oldprice);
p.obliged S,sell(#item,#Buyer,#oldprice);
terminate;
speech-act-semantics
[announce] C
[declare] C
[accept]
if #proposal!=null then intend S,#proposal;

Figure 7 ACL specification containing an auction protocol
Figure 7 shows the ACL specification for an ACL containing this
protocol. When rules are applied, variables prefixed with a # are
replaced by their actual value. Note in particular the protocol
specific semantics specified for the opening announce: the
auctioneer expresses the intention to sell the item item to a
member of the group of bidders at a price not less than price and
to wait until the time timeout has elapsed for a response. These
italicised variables do not yet exist in the conversation state, the
auctioneer must choose values for them. These rich semantics are
vital to enable the auctioneer to reason about how the values will
be chosen and to enable the receiver to reason about how to
update its internal state. For example when choosing a value for
startprice, the auctioneer must know that startprice means the
minimum selling price for the item. Note how the context
independent semantics of announce and declare are identical, it is
only in the context of the protocol that they are given different
meanings. This is similar to the way in which many words in
natural language are synonymous in some contexts and not in
others. The additional protocol specific meaning of declare is the

creation of two persistent social relations: (1)the bidder is
committed to buying the item and (2)the auctioneer is committed to
selling it to him (at the previously announced price). A new accept
in the next iteration of the auction revokes the commitments of the
previous iteration. The accept has a general context independent
meaning which is the expression of an intention to perform an
action that the intended recipient of the accept has previously
proposed. This is included to show the kinds of complex intuitive
meanings which can be specified in this framework, and which
can be given an exact semantics by means of a function which is
easily implemented in any procedural language. An animation of
the protocol is shown in Table 1. Only the more interesting
propositions and variables are shown (to save space).

5. EVALUATION AND CONCLUSIONS
The practical engineering aspects of developing and implementing
agent communication languages were considered in the design of
this framework. Emphasis was therefore placed on minimising the
effort of the developer by separating concerns and facilitating a
modular development. In particular we cater separately for the
following four aspects of context, i.e. the meaning of an act can
depend on:
1. The protocol being followed in the conversation.
2. The relationship between this speech act and the remainder

of the discourse, for example, in section 4.3 the semantics of
accept and the previous announce are related.

3. The domain in which the conversation takes place.
4. The status or authority of the participants (via roles).
Separate specifications constitute flexible building blocks which
can be re-used for specific solutions. Designers can extend the set
of primitive building blocks, adding speech acts and protocols
which can be published and used by others for different protocols.
Although these elements of meaning have been separated, they are
brought together in the semantic evaluation functions and are
thereby interlinked. In particular, there is a well defined
relationship between the semantics of protocols and the acts they
are composed of since protocols are defined using the state
created by the individual acts.
The formal semantics and public perspective mean that it is
possible for an outside observer to determine when agents are not
complying with the specifications. Enforcing compliance can be
achieved by: (1)Sentinel agents may be placed in the society to
observe interactions and punish offending agents (by evicting or
terminating them for example). (2)We may introduce notions like
politeness and trustworthiness. Agents that consistently violate
contingent commitments and speak out of turn may be branded as
impolite and possibly ostracised by the society. Similarly, agents
that are known to violate persistent commitments may be deemed
untrustworthy and may not be offered contracts.

6. FURTHER RESEARCH
With a formal semantics based on externals, verification is
possible, but not trivial. This is the subject of ongoing work.
When both the ACL specification and the internals are well
defined mathematical functions, further functions can be derived
which can prove a certain outcome will result, given a certain
initial state. We are currently working on developing a design tool
and a compiler for ACLs which uses a diagrammatical
representation of protocols based on UML diagrams.

503

Table 1 Animation of a sample Auction
Social State

Conversation State (history omitted) Persistent social relations
Speech act (sender, receiver,

performative, content,
conversation-identifier,

sequence) Variables Propositions Contingent
social relations

Joe,{Bob,Pat},announce,
{protocol=auction,

item=book,
price=40,timeout=3},6,1

Auctioneer=Joe
Bidder={Bob,Pat}
 protocol=auction

item=book; price=40
timeout=3; timer=37
time=34; proposal=
Buy(book,Joe,40)

I Joe Joe,sell(book,member of
{Bob,Pat},>=40)

I Joe Joe,(wait(3) then
declare({Bob,Pat}))

D Joe K Joe I {Bob,Pat}
{Bob,Pat},Buy(book,Joe,40)

permitted Bob,accept({Joe,Pat})
permitted Pat,accept({Joe,Bob})

Bob,{Joe,Pat},
accept,null,6,2

Bidder=Pat
Buyer=Bob I Bob Bob, Buy(book,Joe,40) obliged Joe,announce({Bob,Pat},

price=40+null)

Joe, {Bob,Pat},announce,
price=43,6,3

time=36; price=43
timer=39

I Joe Joe,sell(book,member of
{Pat},>=43) permitted Pat,accept(Joe,Bob)

Bob,{Joe,Pat},accept,
null,6,4

Bidder=Bob
Buyer=Pat

I Pat
Pat,Buy(book,Joe,40)

obliged Joe,announce({Bob,Pat},
price=43+null)

Joe, {Bob,Pat},announce,
price=46,6,5

time=37; price=46
timer=40

I Joe Joe,sell(book,
member of {Bob},>=46) permitted Bob,accept(Joe,Pat)

obliged Joe,declare {Bob,Pat},null)
 time=41; timer=40

Joe,{Bob,Pat},declare,
null,6,6 terminate obliged Pat,buy(book,Joe,43)

obliged Joe,sell(book,Bob,43)

It is apparent that some of the variables that we have placed in the
conversation state are really external to the conversation, for
example the timer variable. Also there are exogenous inputs that
are not speech acts which do have an effect on the social state.
Communication is but one component of social interaction and it
is dependent on other components. We have already made this
explicit by extending the conversation state to a social state which
subsumes it. The next step is to do the same for the inputs that
effect changes in this state, (i.e. speech acts are only one type of
input) and also for the specification which defines the effect of
actions on the state of the society (i.e. the ACL specification is but
one component of this).
In human societies characteristics such as being helpful are
typically determined uniformly by different observers (because
there are certain conventions of society by which behaviour is
judged) i.e. it is not a subjective opinion, it becomes public
knowledge. We would like the social state to include such public
information. For this purpose we intend to make a specification of
the rules governing the conventions of social behaviour, and to
extend the language evaluation function (maps a speech act onto a
change in the social state) so that it can infer the changes in the
states of these high level parameters. An explicit representation of
these high level concepts would allow us to specify a domain
constraint which requires that agents are helpful, and to enforce
sanctions on those who violate the constraint.
We have proposed a development method where the rules agents
use to update their internal states are specified at design time by a
human. In practice this may be difficult or impossible. Agents
may move to new domains and learn new protocols via published
specifications. Such specifications will not include add and select
functions, nor should they, since different agents should have the
freedom to choose their own strategies. This is analogous to a
human who has not been to an auction before, after reading the
rules, the individual can decide upon a strategy for participating.

If we consider that an agent has some rationality, and can access
formal specifications of protocols, there should be a way for the
agent to automatically produce a strategy of its own. For this
reason we are working on specifications of meta-rules that an
agent can use to decide how to update its internal state in a new
protocol. This research has once again highlighted the importance
of rich semantics capturing the intuitive meaning of acts so that an
agent can reason intelligently to interpret and respond to them.

7. REFERENCES
[1] Artikis, A., Guerin, F., Pitt, J. Integrating Interaction

Protocols and Internet Protocols for Agent-Mediated E-
Commerce, In Dignum, F., Cortes, U., Agent-Mediated
Electronic Commerce III. Springer-Verlag. (2001).

[2] FIPA, [OC00003] FIPA 97 Part 2 Version 2.0: Agent
Communication Language Specification. Foundation for
Intelligent Physical Agents. (1997).

[3] Gazdar, G. Speech Act Assignment. Elements of Discourse
Understanding . Cambridge University Press. (1981).

[4] Genesereth, M., Ketchpel, S., Software Agents.
Communications of the ACM, (July 1994).

[5] Cohen, P. and Levesque, H. Communicative Actions for
Artificial Agents. ICMAS’95. MIT Press, Cambridge,
Massachusetts, USA; 1995; p. 65-72. (1995).

[6] Schmidt, D. A. Denotational Semantics: A Methodology for
Language development. Allyn and Bacon Inc. (1986)

[7] Singh, M. A Social Semantics for Agent Communication
Languages. Proceedings of the IJCAI Workshop on Agent
Communication Languages, Springer-Verlag. (2000).

[8] Singh, M. Agent Communication Languages: Rethinking the
Principles. IEEE Computer. vol.31, no.12; p.40-7. (1998).

504

