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Abstract For example, game theory can design mechanisms which
encourage truth telling, or which encourage the participants
Game theory is popular in agent systems for designing to achieve the optimal social welfare. Agent researchers are
auctions with desirable properties. However, many of thesekeen to exploit these techniques. However, there remain
properties will only hold if the game and its properties are several unsolved problems, which will need to be tackled in
common knowledge among the agents. For example, in arorder to make game theory practically usable in open agent
auction where truthful bidding is an equilibrium strategy, systems. A number of these problems are outlined by Dash
unless this is common knowledge, it may not be rational et al. [2] in their “Call to Arms”. This paper is to some
for an agent to bid truthfully. It is currently not clear how extent a response to that call.
this state of common knowledge can be achieved, especially The problem we will tackle is the problem of the “com-
in open agent societies where agents may encounter premon knowledge assumptions” which most game theoretic
viously unseen auction specifications. We need a methodolutions rely on. This is easily explained by an exam-
for communicating the rules of the game to the agents, andple: Game theory could be used to design an auction where
the agents need to be able to determine its properties. Werythful bidding is an equilibrium. This means that if all
present a machine-readable language in which the rules of agents bid truthfully, then no single agent will have an
the game can be written. We show that it is not feasible for incentive to deviate from truthful bidding. However, the
an agent to determine the properties of any arbitrary speci- agents’ incentives to follow the equilibrium strategy (truth-
fication, unless information about the properties is commu- fy| bidding) rest on the assumption that the rules of the game
nicated and/or certain restrictions are placed on the specifi- and the equilibrium are common knowledge amongst the
cation. We look at two special cases where common knowl-agents. Moreover, it is not enough to simply tell them the
edge is achievable: auctions with identical players where ryles: the agents must have a rational basis for believing that
the two highest bidders determine the price, and Grovesthe auction will indeed be implemented according to those
mechanisms with a restriction on the pricing rule. rules. If agents do not have guarantees of compliance then
it would not be rational for them to expect the equilibrium
to be played. Thus the common knowledge includes not
only a knowledge of the rules and the equilibrium, but also
a knowledge that all agents will play by the rules. Clearly,

The vision of agent mediated eCommerce is of an open T i
society of software agents engaging in financial transactions2chi€ving the state of common knowledge required to ef-

and entering legally binding contracts in much the same fe_c_tivelyimplement these game theoretic solutions is a non-
way as humans do in the real world. Many aspects of the tfivial problem in open agent systems.

agent vision mirror current human-based systems. For ex- The problem can be broken down into two parts: (i)
ample, agents may be acting on behalf of different individ- Semantic interoperation: There is a need for machine-
uals or organisations who may have conflicting interests; understandable specification of the rules and properties of
agents may choose to gain advantage by deception, or thegames. (ii) Compliance: There is a need for ways to guar-
may make choices which are suboptimal for the welfare of antee that the participants will abide by the game’s rules.
the society but which maximise their own personal gain.  These are in fact two of the outstanding problems out-
Some solutions to these problems have already been devellined by Dash et al. [2]. Both of these problems are con-
oped for human scenarios; game theory can be used to desequences of the open nature of proposed agent mediated
sign rules for an interaction so as to give the participants aneCommerce systems. For the first problem, by “open” we
incentive to achieve the outcome desired by the designermean that foreign agents will be free to enter and leave dif-

1. Introduction



ferent agent systems at will, and so will need to be able torules and properties of auctions which they may not have
work with previously unseen protocols. There is by now a seen before. Consider the following scenarios:

significant body of work concerned with the design of auc- .

tions for use in multi-agent trading scenarios [6, 14, 9, 16]. 1- Anagent may move to a new auction house and down-
However, these auctions are typically described in research ~ 10ad a published specification for an auction.

papers using a diverse combination of natural language, log-
ics and pseudocode descriptions of algorithms. Only a hu-
man researcher can understand these specifications of auc-
tions. The vision of agent mediated e-commerce will re-
quire agents themselves to understand specifications of auc- 3, Agents may engage in a phase of negotiation over the
tions. This is because agents will need to be able to move rules of the game, until agreeing on its final form. This
between different electronic auction houses where different currently happens in many human scenarios.

auctions are in use; when an agent joins an auction house

it will need to consult some specification to learn about and 4. A tailor-made mechanism may be designed by one of
understand the rules of engagement for that auction house.  the agents, to fit precisely the parameters of the sce-
It needs to do this in order to decide whether to participate, nario. This type oAutomated Mechanism Desifias

and if so, with what strategy. Enabling agents to understand ~ been shown to be feasible in certain cases [12, 13].
the specifications of (previously unseen) auctions is a prob-
lem that has not yet been solved.

The second problem also stems from the open nature o
the system. Constituent agents may be owned by differ-
ent individuals or organisations. This means that they may
have conflicting interests and so it might be in their interest
to cheat each other by not following the rules of the system.
The classic case of this is when the auctioneer in a sealed
bid auction inserts fictitious bids, and so extracts more rev-
enue from the winner. If any participant in a game has an
opportunity to break the rules, then the properties of the
game are likely to be destroyed. There is clearly a need to
provide guarantees that the game will be implemented as
advertised, so that its properties will hold.

In Section 2 we give an overview of the components of
our proposed solution. In Section 3 we describe our spec-
ification language, which allows the rules of the game to
be made public. In Section 4 we look at how agents could
achieve common knowledge of a Bayesian Nash equilib-
rium. In Section 5 we look at how to achieve common
knowledge of strategyproofness and ex post individual ra-
tionality via Groves mechanisms. Section 6 concludes.

2. Individual agents may have their own libraries of
mechanisms, and may swap proposed mechanisms,
until agreement is reached on which one to use.

All of these scenarios have a common feature: the particular
fmechanism proposed is likely to be novel to most of the
agents who are being asked to participate in it. These agents
will need to be able to understand the rules and properties
of the auction to make a decision about whether or not to
participate, and if participating they must determine their
ptimal strategy.

By understandingve mean: firstly, an understanding of
what the participants are allowed to do at any stage in the
auction; secondly, an understanding of the game-theoretic
properties of the auction.

The first requirement can be met by having a standard
machine-readable specification language for auction proto-
cols. This language must allow an auction to be specified
by stating the rules which participating agents must follow;
this includes specifying how the winner is determined, and
the price to be paid. These rules must be sufficiently rig-
orous to ensure that a system of agents complying with the
rules will enjoy the properties which the auction was de-
signed to have. Such a language could simply be a gen-
eral purpose programming language; this would be suffi-
ciently expressive to capture any auctions which could be
implemented. However, the more general the language is
(i.e. free from any constructs specific to particular auction
classes), the more difficult it will be to deduce the proper-

Our proposed solution to the problem is in two parts: tjes of the mechanisms encoded in it. Hence the choice of
Machine Understandable Auctions (MUA) and the Univer- language is related to the second requirement.
sal Auction Machine (UAM). These correspond to the two  The second requirement can be met by giving the agents
aspects of the problem as outlined in the introduction: Se-gome algorithms which they can use to deduce the proper-

2. Overview of Proposed Approach

mantic Interoperation and Compliance. ties of mechanisms. The types of game theoretic properties
which the agents must understand include pareto efficiency,

2.1.  Machine-Understandable Auctions  optimality of revenue, individual rationality, strategyproof-
(MUA) ness, etc. [10]. Two extreme solutions can be envisaged:

On the one hand we could have a completely general auc-
The idea of the Machine-Understandable Auction comestion language and give agents procedures which they can
from the need for agents to have the ability to understand theuse to analyse an arbitrary mechanism and deduce which



properties hold for it; on the other hand we could forego the 3. Auction Specification Language

auction specification language and instead provide a trusted

library of specific mechanisms, annotated with a description  This section presents the syntax and semantics for SMPL
of their properties. The first solution is not feasible compu- (Simple Mechanism Programming Language). This is quite
tationally; the second solution precludes the possibility of a general mechanism programming language which can
using any mechanism which is not in the trusted library, capture static or dynamic games of perfect or imperfect in-
hence it is too restrictive for the types of agent scenariosformation. It is slightly simplified from the version intro-
described above. We advocate a compromise solution: Theduced in [5]. SMPL allows us to explicitly describe the
language will be designed for certain classes of mechanismsnformation exchanged during the course of the game. This
and their properties. Once specific class of auction and de-is achieved by having a module for each player, and using
sired property is chosen, the language allows the details ofspecial variables which the players read from or write to, in
the particular mechanism to be specified. When parts of anorder to communicate. An SMPL program has the follow-
auction are customisable, the desired property should stilling modular syntax{My :: [So] || ... || M., :: [Sa]]

be verifiable. Furthermore, certain components of a mech-It consists ofn 4 1 parallel modules, representing the prin-
anism can be specified in a trusted library, while other de- cipal (module),) and each of the players. Eadls; is an
tails can be left open and specified through the language.identifier for a player in the game and ea}his a statement
For example, we may have a (proven) optimal winner de- which may itself be composed of other statements. An ex-
termination algorithm in the library, and a new mechanism ample of a program can be seen in Section 4.5. The allowed
may choose to use this, while specifying its own customised statements are as follows:

ricing rules. - —
P g Basic Statement Description
. . . idle no operation
2.2. Universal Auction Machine (UAM) U= e assignvaluee to variableu
choosec;..co choosea value forout variable
To verify that agents are going to comply with the spec- !I ¢ :Een gl elsesS, CEEd|t|9r1taI§]ctat;ahmelﬂst Ise id|
ification of an auction it is unlikely that we will be able to ' ﬁ.l end g a rte.:{'a e?SC en s else idie
directly inspect their code and test it. Agents in the system w !te cdo rebpbe ! |pr:o hile ¢ do idl
may be developed by different vendors and these vendors wait ¢ abbreviatesvhiie c do Idie
S1;...5 Sk sequentiakxecution

might desire to keep the internal code of their agents secret.

Even if the code is published, the agents might be based orsyp statements within sequential execution statements are
very different architectures making it too difficult to verify  separated by semicolons which we omit if there is a line
their behaviour by analysis of the code. break. The SMPL program has two special varialteand

The idea of the Universal Auction Machine (UAM) is of  out for communication. These are tuples, having one com-
atrusted third party providing a virtual auctioneer agent that ponent for each player moduld; which has access ti;
can be given a machine-readable specification for an auc-andout; (a subscript is used to specify an element of a tu-
tion, and will run the auction according to that specification; ple); no other player module can refer to these components,
i.e. it will ask the agents for their bids, running repeated apart from the principal. The principal can “send” a mes-
rounds if required, and it will finally determine the winner sage to playet by writing a nonzero value tin;; playeri
and the price to be paid. The UAM’s code should be open then reads it and resets; to zero. Playet can “send” a
source so that it is open to inspection by all parties; they canmessage to the principal by writing a nonzero valuedt;;
verify that it correctly implements any auction specification the principal then reads it and resets it to zero. We allow
it is given. The auction specifications which the UAM ac- no communication between other individual agents; every-
cepts are the same as the specification of the rules used ithing must go through the principal. This does not restrict
the MUA. In this way the UAM can execute specifications the class of games that can be represented, for example we
of auctions which may not be known at the time the UAM could represent an open cry English auction by having a
is written. This fits our scenarios above where agents mightbidder submit a bid to the principal, and having the princi-
agree to use a new tailor made auction for their situation: pal communicate the bid to all other players. Note that the
once they agree on the rules of the mechanism, an instanc®layers make choices in the game by means othuwmse
of the UAM can be spawned to run it. The use of a trusted statements. It is required that the module of exactly one
third party to run the auction is in fact the only way to enable player will begin with achoosestatement. Neahoosestate-
the rules of the auction to be enforced without revealing any ments may appear in moduM,. Module M, has a private
of the participants’ private information to each other, for ex- variableP to which it writes the final outcome of the game;
ample in a sealed bid auction. this is a tuple wherd; is the outcome for agerit



3.1. SMPL Program Semantics would be necessary to have an external module which can
input randomly generated numbers to the principal.
The semantics are defined via a transition sysfenT).
V is the set of system variables, which are either integers, . o
reals or tuples of these; one of these is the control variable4- Bayesian Nash Equilibrium
7 which represents the location of the next statement to be

executed, the remainder represent program variabies. Properties such as optimality of revenue or efficiency

an(n + 1)-tuple, Wher_en _iS th.e number of playe_rs inthe 5.0 typically implemented by means of an equilibrium; the

program (-1 for the principal);w has one part of its tuple 456 'is designed so that the equilibrium play leads to the
to point to the current location within each player's mod- yasired outcome. Two approaches to this are through dom-
ule; r initially points to the start of each module, and all the inant strategies or through a Bayesian Nash equilibrium

remaining variables are initially assigned value zero, this is (BNE). A common criticism of BNE implementation is that
th? state from Wh'Ch fche system can start running. A tran-i is reliant on common knowledge of the probability dis-
sition is a relation which relates a state of the system to its iy tions of the participants’ types; this criticism is the

possible successor statdsis a set of transitions including  «wjiison doctrine” [11, Section 8.2]. This is unlikely to be
one transition corresponding to each statement in the Pro-4chieved in many scenarios, for example an auction for a
gram, as follows. Primed variables refer to the value in the

hi imed variabl ; h rarely sold item. This would suggest that dominant strategy
successor state, while unprimed variables refer to the CUry,ochanisms should be preferred. Despite the possible criti-
rent state/ is a statement’s label ardits post-label. The

o ) . cisms, the BNE is thought to be useful in many scenarios. In
abbreviatiorpresmeans that all variables not referred 10 in- gcon4rjos in which sales of the same items are repeated fre-
the transition relation preserve their previous values.

guently, a good knowledge of probabilities of bidders’ types

open problem [8] and can be difficult [4, 15]. Even if an
equilibrium is found, many games have multiple equilibria,
in which case it is not clear which one the agents should
follow. The solution proposed here is to augment the spec-
The i which appears as a subscript sncomes from the  ification of the mechanism with information about its prop-
module in which the statement is located. If a transition erties. In the case of an equilibrium, a part of the specifica-
T maps a state to a non-empty set of possible successor tion will include the designer’s recommended equilibrium
states, them is enabled ory; if it maps s to the null set  strategy for each agent; we use the SMPL both for specify-
then the transition is disabled on stateA terminal state  ing the rules of the game and the equilibrium strategies. In
is one where no transition is enabled, and no location in theopen systems there is no guarantee that a devious agent will
control variable is pointing to ahoosestatement; i.e. the  not publish false information; therefore agents will need to
program is not waiting for any player to make a choice. verify for themselves that the published recommendation is
Given a fixed decision for each player’s choice points, an indeed an equilibrium. We analyse the complexity of this
SMPL program’s behaviour should be deterministic; other- Verification problem here.
wise it is not a valid SMPL program. This means that at  Note that we do not include the probability distributions
any state, all the players, except one, should beaaia of the players’ types in the specification. Recall that the
statement, or should have terminated. This restriction en-purpose of the MUA language is to allow agents to commu-
sures that we have a unique history of communication cor-nicate mechanisms and their properties. If agents were to
responding to a single state of the game. communicate the probability distributions then there would
SMPL is a Turing Complete language, and is sufficiently be no reason for the receiving agents to believe they were
expressive to represent any game with a countable actioraccurate, and indeed there would be an incentive for the
space. One limitation relates to probabilities; there is no transmitting agent to distort them. Therefore we must as-
way to represent alternative outcomes which are chosen acsume that the probability distributions are a prior common
cording to some probability distribution. To simulate this it knowledge.

~ =

Statement Transition Relation can be gathered. In this section we will take BNE as our ex-
- ample for the mechanism property our MUA language will
idle T =LAT = 5 A pres capture, because it turns out that it is easier to check a BNE
ui=e mi=L{Am =L Nu =eNpres than a dominant strategy profile.
chooseci..c;  m =L A7 =L Apresh If we simply publish the rules of the game as the spec-
[out]; = c1 V...V outj = c] ification, then to determine the best strategy for participa-
if cthenty: Sy [m =€AT =L AcApres]V tion, an agent could “solve” the game to find the equilib-
elsely: S, [m; = L AT, = o A —c A pres] rium strategies. However, computing Nash equilibria is an
[

while ¢ 7'&'1':5/\71'-:@/\—\6/\]77”68}\/
do[¢y: S] [mi = LAT =141 A c A pres]
Note the post-location of is ¢ :

~




4.1. Verifying a Bayesian Nash Equilibrium

A static gameG with n players is described by the tu-
ple (Ay,..., A;Th, ..., Th;psus, ... u,); A, is player
1's action spaceT; his type spacey is the (common knowl-
edge) probability distribution over players’ types amdis
playeri’s utility function. Player: will only be aware of
his own typet;; the type profile of all the other agents is
given by some _;, and playet can calculate the likelihood
of any particulat_; occurring by computing(t_;|¢;). The

utility , is a function of all the actions taken by all players,

and the type of playet, i.e. u(ay, ..., an;t;). An agent’s

not as difficult as finding an unknown equilibrium however;
the saving here is due to the fact that at step 4 we only check
every possible configuration ¢§pesfor the other agents,
not their possiblestrategies we assume that all the other
agents are playing®, so their action is fixed once their type

is known. If we had been searching for an equilibrium we
should additionally have to consider every possible strategy
profile which the opponents might play.

The above worst case complexity for verifying an equi-
librium suggests that it is only practical in scenarios with a
small number of agents. (See e.g. Section 4.2.) Despite this,
in many practical cases the utility function is quite simple,

(pure) strategy is a function mappmg each of his possibleand large chunks of the space of all possible configurations

typest; € T; to an actiona; € A;. The strategy profile
s* = (st,...,s;)is a BNEif for each playei and for each
of i's typest; € T;, s¥(t;) gives the actiom; € A; which

maximises the expected value of playerutility:

Z ui(si(tl)a sy Gy ey S:L(tn); ti)p(t—ivti)

t_,€T_;

Which we abbreviate asE(u;(a;, s*;(t—;);t;)) (ex-
pected utility). Ifa; maximises playei's expected utility,
then player will have no incentive to deviate from the ac-
tion recommended by*. Calculating this sum will require

for t_; are assigned the same utility. (See e.g. Section 4.5.)
4.2. Example: Two Player Double Auction

This auction example is from Gibbons [3, p. 158]. There
is one buyer and one seller. The buyer’s offer priceis
and the seller’s asking price is. If p, > p, then trade
occurs at priceop = (py, + ps)/2, otherwise no trade oc-
curs. We specify this mechanism with the following SMPL
program. The players’ valuations are drawn from indepen-
dent uniform distributions on [0,1]. Note that for automated

us to consider every single possible configuration of the op-checking we can only use integer ranges, so we replace the

ponents’ types_;. If there aren players each having:
possible types, then there ar&~! possible configurations

for¢t_;. If we are presented with a purported BNE and asked {(1,

original type (and price) ranges of [0,1] with the integer
range 0..999. The outcome here is a tuple for each agent.
—pt), (—1,p)) means that agent 1 gets (1) the item and

to check if it is indeed a BNE, we will need to calculate (for Pays—p: and agent 2 gives (-1) the item and receipgs

each playei and for each of’s types) the expected utility

for each action he could take, and to compare it with ex-
pected utility of the recommended action. Algorithm 4.1

below checks a BNE, given as input a strategy profile
and a static gamé&' (as above).

Algorithm 4.1 (Check BNE)
1. for each player i do

2. foreachtypet; € T; do
3 for each action a; € A; \ {sj(¢:)} do

4. calculate E(u;(a;, s ;(t—:);t:))
5 and verify that itis < E(u;(s; (¢:), s%;(t—
6

. i)iti))
. od; od; od

Let us assume players each having: possible types

anda possible actions to choose from. This means that steps

4 and 5 are executedna times. However, it is step 4 that
dominates the complexity as it involves checking the !
possible configurations far_;. Thus it is exponential in the
number of players. In the worst casé,could assign a dif-

ferent action to every possible type, and the utility functions

wait outy = 0; ing := 1; wait outs =0
Py 1= out1;ps i= oula; py := (P + ps)/2;

Mo 15t py > py then Pi= (1, —pi), (—1,p1))
else P := ((0,0), (0,0))

| 1 5 | choosen..999]

| Mz [ wait in = 05 choose..999]

This mechanism has many BNEs. The following equi-
librium gives the best expected gains for the players.
2 1 2 1
gvb + 12’ Ps(vs) = gvs + 1
JWhereuv, andv, are the valuations (types) of the buyer and
seller. This gives the following strategy programs:

po(vp) =

Stratq ::
Stratsy ::

action := £ X value + —
12

2
3
; 2 1

[ action := 5 X value + 4]

In the case of this small number (two) of players, it is

u; could assign a different utility to every possible profile of clearly feasible to calculate the expected utility of taking an

actions, making the problem intractableNote that this is

1The same result holds for checking a dominant strategy profile, in this

action, as we have a single opponent. We simply go through
each of our opponent’s possible types, and find the action he

case we need to check over all possible bids for the opponents (rather tharvould take according to the specified strategy, and then we

their types).

can calculate our utility from the SMPL program.



4.3. Games With Identical Players [v10, v] we will calculate the probability of the second high-
est bidder taking that value, and multiply it by the utility

A significant reduction in the number of possible config- that bidder would receive. _
urations fort_; can be achieved by restricting our attention L&t us start with the value. We will calculate the prob-
to games with identical players. In our examples, players’ ability t_h.at the second highest bidder ha§ valuatiorThe
types are independent so we can simply wité;) for the probab|I.|ty thvat all then — 1 opponent b!(jders have val-
probability that playet takes typet;. All the p; are com- ~ Ues=vis (Zx:p,oP(CE))TL_l- The probability that none of
mon knowledge. If all players have identical type spaces these bidders bidsis
T; = T, and probability distributiong;, then the number o1 Y n—1
of possible distinct type profiles for the— 1 opponents be- (Zx=mo P(x)/ ) PCE))
comes equivalent to selectimg- 1 objects from a choice of - i
|T| objects where each type can be chosen more than once. Therefore the probability that at least one of them hids

This is is the complement of this event:
n—1
(IT|+(n—-1)—=1)!  (T|+n—2) 1 (z;;}”o p(z)/ z;:vlop(x))

(n—)(T|-1)!  (n—D(T| - 1)
Multiplying these we get the probability that the second
Note that with the addition of each new player this increaseshighest bid is, let us call this evenkigh? = v:
by a factor of‘T‘++_1, whereas in the non-identical play-
ers’ worst case scenario the corresponding increagg| is
In the identical case, whembecomes greater thad#|, in- v n—1 v—1 n—1
creasingn i i < > <Zw_vlo p(x)>
gn increases the overall complexity by a factor of Z p(z) 1— | &=
less than two, which is a significant saving. However, for w—vrs > o=, P(T)
large values ofi the problem is still unlikely to be feasible.

prob(high2 = v) =

Now we multiply this by the utility obtained; — s*(v):
4.4. Two Players Determine Outcome prob(high? = v)(v; — s* (1))

We now look at the class of single-item auctions with  i.e. this is the utility obtained by bidderif he bidsz, and
identical bidders, where a bidder wins only if he is the high- the second highest bidder bids just under him, multiplied by
est bidder, and the price the winner pays is determined bythe probability of this occurring. Now we need to sum for
the first and second highest bids. No losing bidder makesall the possible second highest bids, where the second high-
or receives any payments. The bidders’ types are simplyest bidder takes all valuations in the integer rapgg v]:
valuations of the item in this auction; i.e. the bidder prefers "
outcomes where he wins the auction and the difference be- * ) _ . _ *
tween his valuation for the item and what he has to pay for Blus(birs™i(t-i)ivi)) = D prob(hight = y)(vi—s" (1))
it is greatest. We also restrict the strategy space to those
strategies where the bid is a monotonically increasing func-where v is the highest valuation for whick*(v) < b;.
tion of the valuation. This is a reasonable assumption in anNow we will look at the time complexity of an algorithm
auction. To simplify the analysis we construct the mecha- to compute the expected utility. We are assuming that we
nism so that if there are two or more bidders having equal have a vector which stores all the discrgte) values for
highest bids then no trade occurs. This is unrealistic in auc-x in the integer rangey, . .. vy;. Clearly the summations
tions, but rectifying it would be simple; however we choose Zi:% p(zx) for z = vy, . .. vp; are being used many times,
not to as it complicates the presentation. Types range oveiso it will be efficient to calculate them all and store them in
the integers fromy;, to v;,;. Bids range over the real num- a vectorSp such thatSp, = Z;:vlo p(x). Filling this vec-
bers. Suppose we want to calculate the expected value fotor with values can be done in,; — v;, steps. Similarly we
some bidder if his value isv; and his bid isb;. Clearly can create a vectdr2 such thatP2, = prob(high2 = z).

i's utility is zero if he does not win the auction. The other given that vectoiSp is already computed, vectdt2 can be
cases to consider are each of those where he wins and theomputed in time polynomial in — 1. Now the final sum
second highest bidder takes each possible valug. We for F(u;(b;, s* ;(t—i); v;)) can be computed in polynomial

Y="io

uses™* to find the highest valuation for which s*(v) < b;. time if the strategy function* can be computed in polyno-
Because of our monotonic strategy function assumption wemial time (a reasonable assumption).
know that in order fori to win, all opponents must have This result does not hold in the case of checking a dom-

a valuation< v. Now for each integer value in the range inant strategy profile. Dominant strategy profiles are harder



to check because we can make no assumptions about thhighest bids). Agents can call on the trusted library to gen-
opponents’ strategies; we would need to ensure that ourerate a version of this specification, instantiatinfpr any
player's strategy gives him the best outcome, for whateverdesired number of agents, and leavihg, ., blank. This

strategy profile is played by the opponents. means that the pricing rule can be customised as desired; it
can only use the two highest bids however, as that is all that
4.5. Example With Multiple Bidders is input to the modulé/,,, ;. Hence the mechanism'’s equi-

librium can still be verified using the method of Section 4.4.

The following parameterised SMPL program represents VW& must also perform a check on the published strategy to
a first price sealed bid auction. It is parameterised bihe ensure itisa r_nonoto_nlcally increasing function of the valu-
number of bidders. Again, we use the integer range 0..99921ion; to do this we simply check through all types that can
for the bids. Note that modulk/,,., ; is the module deciding ~ °€ input to the strategy and verify that the action (bid) is a
the price the winning bidder will pay. The principal module Monotonically increasing function.
M, determines the winner, and records the two highest bids,
passing them on to moduld,, ,; as a tuple. Modulé/,, . 5. Groves Mechanisms
then simply selects the first part of this tuple (first price) and
returns it toMy. The outcome here only assigns a value for

- X . We can apply a similar modularisation technique to the
the winning agent, all otheP; will remain zero.

class of Groves mechanisms. Groves mechanisms can be
used in a wide variety of auctions, including combinatorial
[ wait out; = 0; i := 2; T auctions. In this case we can have separate modules for the
in; := 1; wait out; = 0 pricing rule and the allocation rule. The allocation prob-
=i+ 1 lem for combinatorial auctions is known to be NP-complete
and inapproximable [7]. Verifying this portion of the mech-
anism is therefore not feasible at run-time, and so agents
could rely on a trusted module from the library to perform

while 7 < n do

i:=1;
while 7 < n do

tie : =0 . . .
. ) the allocation. The pricing rule is left open for the agents
if out; > highl then | highl := out; o pricing open gen
: . to specialise for their particular scenario, with some restric-
My winner =1

tions as described below. It is the pricing rule that will then
determine the remaining properties of the auction.

Groves mechanisms have the property of being strate-
gyproof (i.e. dominant strategy to bid truthfully); the allo-

else
if out; = highl then tie := 1
if out; > high2 then high2 := out;

- vi=il . ' _ - cation is done optimally (outcoms), and PT is the pay-
inp41 := (highl, high2); wait out,11 =0 ment transferred to each agent
if tie = 0then Pyinner := (1, —outi1)
L elsepwmner = <O, 0> i PT; = Z '[;j (0*) - C_;
M; :: [ chooseD..999] JEN\{7}
M, :: [ wait iny = 0; choose0..999] WhereN is the set of agents;(o*) is agent;’s declared

valuation on the allocation and_; is some quantity inde-
: pendent of agenit Now we can generate a specification for
M, :: [ wait in,, = 0; choose0..999] amechanism which has a customisable pricing module. The
principal moduleM of the mechanism polls the agents for
Mg [wait Npr1 = 0; T := iNpy1; outyyy = xl} their bids, and calls the allocation module. Then it calls the
pricing module to calculate a price for each agent, but when-
The following is the equilibrium strategy for each agent, €ver the pricing module is called to calculate the payment

again parameterised by for agenti, it is only passed the declared valuations of the
agents excluding. This guarantees that the mechanism as
Strat :: | action := (n — 1) X value/n| awhole is a Groves mechanism, and hence is strategyproof.

We would also like to guarantee ex-post individual ra-
The modularisation in the above auction allows it to be eas-tionality (this means that the agents are guaranteed not to
ily generalised to cover the class of single-item auctions get negative utility by participating in the mechanism). To
with identical bidders, where a bidder wins only if he is guarantee this we need to ensure that the following holds:
the highest bidder, and the price the winner pays is deter-
mined by the two highest bids (i.e. any function of the two 0;(0")+ PT; >0



This guarantee can be achieved by including a check in theReferences

module of the principal agent, such that after calling the
pricing module to get the valué_;, it determines if the in- [1]
equality above holds with the transf&fT;; if it does not
hold then the principal cancels the auction and no sale is
made, and all agents receive zero utility. In this way we can
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6. Conclusion and Future Work "
We have broken the problem of achieving common
knowledge in mechanisms into two parts: semantic inter- [7]
operation, and guarantees of compliance. The guarantees
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mantic interoperation is more problematic. This problem
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ploy some of the abstraction techniques used by the model
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equilibrium exhaustively checks each possible bid value,
when in fact all bids below or above a critical threshold |4,
could be lumped together. Ultimately we want to determine
the limits of the approach. We expect that some classes
of auctions will prove difficult to verify automatically, and  [15]
that some auctions will only be verifiable if their complex-
ity is limited. When these limits are determined, they can
be used to inform the design of mechanisms for agent sce-l
narios where semantic interoperation is desired.
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