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Abstract

Game theory is popular in agent systems for designing
auctions with desirable properties. However, many of these
properties will only hold if the game and its properties are
common knowledge among the agents. For example, in an
auction where truthful bidding is an equilibrium strategy,
unless this is common knowledge, it may not be rational
for an agent to bid truthfully. It is currently not clear how
this state of common knowledge can be achieved, especially
in open agent societies where agents may encounter pre-
viously unseen auction specifications. We need a method
for communicating the rules of the game to the agents, and
the agents need to be able to determine its properties. We
present a machine-readable language in which the rules of
the game can be written. We show that it is not feasible for
an agent to determine the properties of any arbitrary speci-
fication, unless information about the properties is commu-
nicated and/or certain restrictions are placed on the specifi-
cation. We look at two special cases where common knowl-
edge is achievable: auctions with identical players where
the two highest bidders determine the price, and Groves
mechanisms with a restriction on the pricing rule.

1. Introduction

The vision of agent mediated eCommerce is of an open
society of software agents engaging in financial transactions
and entering legally binding contracts in much the same
way as humans do in the real world. Many aspects of the
agent vision mirror current human-based systems. For ex-
ample, agents may be acting on behalf of different individ-
uals or organisations who may have conflicting interests;
agents may choose to gain advantage by deception, or they
may make choices which are suboptimal for the welfare of
the society but which maximise their own personal gain.
Some solutions to these problems have already been devel-
oped for human scenarios; game theory can be used to de-
sign rules for an interaction so as to give the participants an
incentive to achieve the outcome desired by the designer.

For example, game theory can design mechanisms which
encourage truth telling, or which encourage the participants
to achieve the optimal social welfare. Agent researchers are
keen to exploit these techniques. However, there remain
several unsolved problems, which will need to be tackled in
order to make game theory practically usable in open agent
systems. A number of these problems are outlined by Dash
et al. [2] in their “Call to Arms”. This paper is to some
extent a response to that call.

The problem we will tackle is the problem of the “com-
mon knowledge assumptions” which most game theoretic
solutions rely on. This is easily explained by an exam-
ple: Game theory could be used to design an auction where
truthful bidding is an equilibrium. This means that if all
agents bid truthfully, then no single agent will have an
incentive to deviate from truthful bidding. However, the
agents’ incentives to follow the equilibrium strategy (truth-
ful bidding) rest on the assumption that the rules of the game
and the equilibrium are common knowledge amongst the
agents. Moreover, it is not enough to simply tell them the
rules; the agents must have a rational basis for believing that
the auction will indeed be implemented according to those
rules. If agents do not have guarantees of compliance then
it would not be rational for them to expect the equilibrium
to be played. Thus the common knowledge includes not
only a knowledge of the rules and the equilibrium, but also
a knowledge that all agents will play by the rules. Clearly,
achieving the state of common knowledge required to ef-
fectively implement these game theoretic solutions is a non-
trivial problem in open agent systems.

The problem can be broken down into two parts: (i)
Semantic interoperation: There is a need for machine-
understandable specification of the rules and properties of
games. (ii) Compliance: There is a need for ways to guar-
antee that the participants will abide by the game’s rules.

These are in fact two of the outstanding problems out-
lined by Dash et al. [2]. Both of these problems are con-
sequences of the open nature of proposed agent mediated
eCommerce systems. For the first problem, by “open” we
mean that foreign agents will be free to enter and leave dif-



ferent agent systems at will, and so will need to be able to
work with previously unseen protocols. There is by now a
significant body of work concerned with the design of auc-
tions for use in multi-agent trading scenarios [6, 14, 9, 16].
However, these auctions are typically described in research
papers using a diverse combination of natural language, log-
ics and pseudocode descriptions of algorithms. Only a hu-
man researcher can understand these specifications of auc-
tions. The vision of agent mediated e-commerce will re-
quire agents themselves to understand specifications of auc-
tions. This is because agents will need to be able to move
between different electronic auction houses where different
auctions are in use; when an agent joins an auction house
it will need to consult some specification to learn about and
understand the rules of engagement for that auction house.
It needs to do this in order to decide whether to participate,
and if so, with what strategy. Enabling agents to understand
the specifications of (previously unseen) auctions is a prob-
lem that has not yet been solved.

The second problem also stems from the open nature of
the system. Constituent agents may be owned by differ-
ent individuals or organisations. This means that they may
have conflicting interests and so it might be in their interest
to cheat each other by not following the rules of the system.
The classic case of this is when the auctioneer in a sealed
bid auction inserts fictitious bids, and so extracts more rev-
enue from the winner. If any participant in a game has an
opportunity to break the rules, then the properties of the
game are likely to be destroyed. There is clearly a need to
provide guarantees that the game will be implemented as
advertised, so that its properties will hold.

In Section 2 we give an overview of the components of
our proposed solution. In Section 3 we describe our spec-
ification language, which allows the rules of the game to
be made public. In Section 4 we look at how agents could
achieve common knowledge of a Bayesian Nash equilib-
rium. In Section 5 we look at how to achieve common
knowledge of strategyproofness and ex post individual ra-
tionality via Groves mechanisms. Section 6 concludes.

2. Overview of Proposed Approach

Our proposed solution to the problem is in two parts:
Machine Understandable Auctions (MUA) and the Univer-
sal Auction Machine (UAM). These correspond to the two
aspects of the problem as outlined in the introduction: Se-
mantic Interoperation and Compliance.

2.1. Machine-Understandable Auctions
(MUA)

The idea of the Machine-Understandable Auction comes
from the need for agents to have the ability to understand the

rules and properties of auctions which they may not have
seen before. Consider the following scenarios:

1. An agent may move to a new auction house and down-
load a published specification for an auction.

2. Individual agents may have their own libraries of
mechanisms, and may swap proposed mechanisms,
until agreement is reached on which one to use.

3. Agents may engage in a phase of negotiation over the
rules of the game, until agreeing on its final form. This
currently happens in many human scenarios.

4. A tailor-made mechanism may be designed by one of
the agents, to fit precisely the parameters of the sce-
nario. This type ofAutomated Mechanism Designhas
been shown to be feasible in certain cases [12, 13].

All of these scenarios have a common feature: the particular
mechanism proposed is likely to be novel to most of the
agents who are being asked to participate in it. These agents
will need to be able to understand the rules and properties
of the auction to make a decision about whether or not to
participate, and if participating they must determine their
optimal strategy.

By understandingwe mean: firstly, an understanding of
what the participants are allowed to do at any stage in the
auction; secondly, an understanding of the game-theoretic
properties of the auction.

The first requirement can be met by having a standard
machine-readable specification language for auction proto-
cols. This language must allow an auction to be specified
by stating the rules which participating agents must follow;
this includes specifying how the winner is determined, and
the price to be paid. These rules must be sufficiently rig-
orous to ensure that a system of agents complying with the
rules will enjoy the properties which the auction was de-
signed to have. Such a language could simply be a gen-
eral purpose programming language; this would be suffi-
ciently expressive to capture any auctions which could be
implemented. However, the more general the language is
(i.e. free from any constructs specific to particular auction
classes), the more difficult it will be to deduce the proper-
ties of the mechanisms encoded in it. Hence the choice of
language is related to the second requirement.

The second requirement can be met by giving the agents
some algorithms which they can use to deduce the proper-
ties of mechanisms. The types of game theoretic properties
which the agents must understand include pareto efficiency,
optimality of revenue, individual rationality, strategyproof-
ness, etc. [10]. Two extreme solutions can be envisaged:
On the one hand we could have a completely general auc-
tion language and give agents procedures which they can
use to analyse an arbitrary mechanism and deduce which



properties hold for it; on the other hand we could forego the
auction specification language and instead provide a trusted
library of specific mechanisms, annotated with a description
of their properties. The first solution is not feasible compu-
tationally; the second solution precludes the possibility of
using any mechanism which is not in the trusted library,
hence it is too restrictive for the types of agent scenarios
described above. We advocate a compromise solution: The
language will be designed for certain classes of mechanisms
and their properties. Once specific class of auction and de-
sired property is chosen, the language allows the details of
the particular mechanism to be specified. When parts of an
auction are customisable, the desired property should still
be verifiable. Furthermore, certain components of a mech-
anism can be specified in a trusted library, while other de-
tails can be left open and specified through the language.
For example, we may have a (proven) optimal winner de-
termination algorithm in the library, and a new mechanism
may choose to use this, while specifying its own customised
pricing rules.

2.2. Universal Auction Machine (UAM)

To verify that agents are going to comply with the spec-
ification of an auction it is unlikely that we will be able to
directly inspect their code and test it. Agents in the system
may be developed by different vendors and these vendors
might desire to keep the internal code of their agents secret.
Even if the code is published, the agents might be based on
very different architectures making it too difficult to verify
their behaviour by analysis of the code.

The idea of the Universal Auction Machine (UAM) is of
a trusted third party providing a virtual auctioneer agent that
can be given a machine-readable specification for an auc-
tion, and will run the auction according to that specification;
i.e. it will ask the agents for their bids, running repeated
rounds if required, and it will finally determine the winner
and the price to be paid. The UAM’s code should be open
source so that it is open to inspection by all parties; they can
verify that it correctly implements any auction specification
it is given. The auction specifications which the UAM ac-
cepts are the same as the specification of the rules used in
the MUA. In this way the UAM can execute specifications
of auctions which may not be known at the time the UAM
is written. This fits our scenarios above where agents might
agree to use a new tailor made auction for their situation:
once they agree on the rules of the mechanism, an instance
of the UAM can be spawned to run it. The use of a trusted
third party to run the auction is in fact the only way to enable
the rules of the auction to be enforced without revealing any
of the participants’ private information to each other, for ex-
ample in a sealed bid auction.

3. Auction Specification Language

This section presents the syntax and semantics for SMPL
(Simple Mechanism Programming Language). This is quite
a general mechanism programming language which can
capture static or dynamic games of perfect or imperfect in-
formation. It is slightly simplified from the version intro-
duced in [5]. SMPL allows us to explicitly describe the
information exchanged during the course of the game. This
is achieved by having a module for each player, and using
special variables which the players read from or write to, in
order to communicate. An SMPL program has the follow-
ing modular syntax:[M0 :: [S0] ‖ . . . ‖ Mn :: [Sn]]
It consists ofn + 1 parallel modules, representing the prin-
cipal (moduleM0) and each of the players. EachMi is an
identifier for a player in the game and eachSi is a statement
which may itself be composed of other statements. An ex-
ample of a program can be seen in Section 4.5. The allowed
statements are as follows:

Basic Statement Description

idle no operation
u := e assignvaluee to variableu
choosec1..c2 choosea value forout variable
if c then S1 elseS2 conditionalstatement
if c then S abbreviatesif c then S else idle
while c do S repetitionof S
wait c abbreviateswhile c do idle
S1; . . . ;Sk sequentialexecution

Sub statements within sequential execution statements are
separated by semicolons which we omit if there is a line
break. The SMPL program has two special variablesin and
out for communication. These are tuples, having one com-
ponent for each player moduleMi which has access toini

andout i (a subscript is used to specify an element of a tu-
ple); no other player module can refer to these components,
apart from the principal. The principal can “send” a mes-
sage to playeri by writing a nonzero value toini; playeri
then reads it and resetsini to zero. Playeri can “send” a
message to the principal by writing a nonzero value toout i;
the principal then reads it and resets it to zero. We allow
no communication between other individual agents; every-
thing must go through the principal. This does not restrict
the class of games that can be represented, for example we
could represent an open cry English auction by having a
bidder submit a bid to the principal, and having the princi-
pal communicate the bid to all other players. Note that the
Players make choices in the game by means of thechoose
statements. It is required that the module of exactly one
player will begin with achoosestatement. Nochoosestate-
ments may appear in moduleM0. ModuleM0 has a private
variableP to which it writes the final outcome of the game;
this is a tuple wherePi is the outcome for agenti.



3.1. SMPL Program Semantics

The semantics are defined via a transition system〈V, T 〉.
V is the set of system variables, which are either integers,
reals or tuples of these; one of these is the control variable
π which represents the location of the next statement to be
executed, the remainder represent program variables.π is
an (n + 1)-tuple, wheren is the number of players in the
program (+1 for the principal);π has one part of its tuple
to point to the current location within each player’s mod-
ule;π initially points to the start of each module, and all the
remaining variables are initially assigned value zero, this is
the state from which the system can start running. A tran-
sition is a relation which relates a state of the system to its
possible successor states.T is a set of transitions including
one transition corresponding to each statement in the pro-
gram, as follows. Primed variables refer to the value in the
successor state, while unprimed variables refer to the cur-
rent state.̀ is a statement’s label and̀̂its post-label. The
abbreviationpresmeans that all variables not referred to in
the transition relation preserve their previous values.

Statement Transition Relation

idle πi = ` ∧ π′
i = ˆ̀ ∧ pres

u := e πi = ` ∧ π′
i = ˆ̀ ∧ u′ = e ∧ pres

choosec1..c2 πi = ` ∧ π′
i = ˆ̀ ∧ pres∧

[out ′i = c1 ∨ . . . ∨ out ′i = c2]

if c then `1: S1 [πi = ` ∧ π′
i = `1∧ c ∧ pres] ∨

else`2: S2 [πi = ` ∧ π′
i = `2∧ ¬c ∧ pres]

while c [πi = ` ∧ π′
i = ˆ̀ ∧ ¬c ∧ pres] ∨

do [`1: S] [πi = ` ∧ π′
i = `1∧ c ∧ pres]

Note the post-location ofS is ` :

The i which appears as a subscript onπ comes from the
module in which the statement is located. If a transition
τ maps a states to a non-empty set of possible successor
states, thenτ is enabled ons; if it maps s to the null set
then the transition is disabled on states. A terminal state
is one where no transition is enabled, and no location in the
control variable is pointing to achoosestatement; i.e. the
program is not waiting for any player to make a choice.

Given a fixed decision for each player’s choice points, an
SMPL program’s behaviour should be deterministic; other-
wise it is not a valid SMPL program. This means that at
any state, all the players, except one, should be at await
statement, or should have terminated. This restriction en-
sures that we have a unique history of communication cor-
responding to a single state of the game.

SMPL is a Turing Complete language, and is sufficiently
expressive to represent any game with a countable action
space. One limitation relates to probabilities; there is no
way to represent alternative outcomes which are chosen ac-
cording to some probability distribution. To simulate this it

would be necessary to have an external module which can
input randomly generated numbers to the principal.

4. Bayesian Nash Equilibrium

Properties such as optimality of revenue or efficiency
are typically implemented by means of an equilibrium; the
game is designed so that the equilibrium play leads to the
desired outcome. Two approaches to this are through dom-
inant strategies or through a Bayesian Nash equilibrium
(BNE). A common criticism of BNE implementation is that
it is reliant on common knowledge of the probability dis-
tributions of the participants’ types; this criticism is the
“Wilson doctrine” [11, Section 8.2]. This is unlikely to be
achieved in many scenarios, for example an auction for a
rarely sold item. This would suggest that dominant strategy
mechanisms should be preferred. Despite the possible criti-
cisms, the BNE is thought to be useful in many scenarios. In
scenarios in which sales of the same items are repeated fre-
quently, a good knowledge of probabilities of bidders’ types
can be gathered. In this section we will take BNE as our ex-
ample for the mechanism property our MUA language will
capture, because it turns out that it is easier to check a BNE
than a dominant strategy profile.

If we simply publish the rules of the game as the spec-
ification, then to determine the best strategy for participa-
tion, an agent could “solve” the game to find the equilib-
rium strategies. However, computing Nash equilibria is an
open problem [8] and can be difficult [4, 15]. Even if an
equilibrium is found, many games have multiple equilibria,
in which case it is not clear which one the agents should
follow. The solution proposed here is to augment the spec-
ification of the mechanism with information about its prop-
erties. In the case of an equilibrium, a part of the specifica-
tion will include the designer’s recommended equilibrium
strategy for each agent; we use the SMPL both for specify-
ing the rules of the game and the equilibrium strategies. In
open systems there is no guarantee that a devious agent will
not publish false information; therefore agents will need to
verify for themselves that the published recommendation is
indeed an equilibrium. We analyse the complexity of this
verification problem here.

Note that we do not include the probability distributions
of the players’ types in the specification. Recall that the
purpose of the MUA language is to allow agents to commu-
nicate mechanisms and their properties. If agents were to
communicate the probability distributions then there would
be no reason for the receiving agents to believe they were
accurate, and indeed there would be an incentive for the
transmitting agent to distort them. Therefore we must as-
sume that the probability distributions are a prior common
knowledge.



4.1. Verifying a Bayesian Nash Equilibrium

A static gameG with n players is described by the tu-
ple 〈A1, . . . , An;T1, . . . , Tn; p;u1, . . . , un〉; Ai is player
i’s action space,Ti his type space,p is the (common knowl-
edge) probability distribution over players’ types andui is
player i’s utility function. Playeri will only be aware of
his own typeti; the type profile of all the other agents is
given by somet−i, and playeri can calculate the likelihood
of any particulart−i occurring by computingp(t−i|ti). The
utility ui is a function of all the actions taken by all players,
and the type of playeri, i.e. u(a1, . . . , an; ti). An agenti’s
(pure) strategy is a function mapping each of his possible
typesti ∈ Ti to an actionai ∈ Ai. The strategy profile
s∗ = (s∗1, . . . , s

∗
n) is a BNE if for each playeri and for each

of i’s typesti ∈ Ti, s∗i (ti) gives the actionai ∈ Ai which
maximises the expected value of playeri’s utility:∑

t−i∈T−i

ui(s∗1(t1), . . . , ai, . . . , s
∗
n(tn); ti)p(t−i, ti)

Which we abbreviate as:E(ui(ai, s
∗
−i(t−i); ti)) (ex-

pected utility). Ifai maximises playeri’s expected utility,
then playeri will have no incentive to deviate from the ac-
tion recommended bys∗. Calculating this sum will require
us to consider every single possible configuration of the op-
ponents’ typest−i. If there aren players each havingm
possible types, then there aremn−1 possible configurations
for t−i. If we are presented with a purported BNE and asked
to check if it is indeed a BNE, we will need to calculate (for
each playeri and for each ofi’s types) the expected utility
for each action he could take, and to compare it with ex-
pected utility of the recommended action. Algorithm 4.1
below checks a BNE, given as input a strategy profiles∗,
and a static gameG (as above).

Algorithm 4.1 (Check BNE)
1. for each player i do
2. for each type ti ∈ Ti do
3. for each action ai ∈ Ai \ {s∗i (ti)} do
4. calculate E(ui(ai, s

∗
−i(t−i); ti))

5. and verify that it is ≤ E(ui(s
∗
i (ti), s

∗
−i(t−i); ti))

6. od; od; od

Let us assumen players each havingm possible types
anda possible actions to choose from. This means that steps
4 and 5 are executednma times. However, it is step 4 that
dominates the complexity as it involves checking themn−1

possible configurations fort−i. Thus it is exponential in the
number of players. In the worst case,s∗ could assign a dif-
ferent action to every possible type, and the utility functions
ui could assign a different utility to every possible profile of
actions, making the problem intractable.1 Note that this is

1The same result holds for checking a dominant strategy profile, in this
case we need to check over all possible bids for the opponents (rather than
their types).

not as difficult as finding an unknown equilibrium however;
the saving here is due to the fact that at step 4 we only check
every possible configuration oftypesfor the other agents,
not their possiblestrategies; we assume that all the other
agents are playings∗, so their action is fixed once their type
is known. If we had been searching for an equilibrium we
should additionally have to consider every possible strategy
profile which the opponents might play.

The above worst case complexity for verifying an equi-
librium suggests that it is only practical in scenarios with a
small number of agents. (See e.g. Section 4.2.) Despite this,
in many practical cases the utility function is quite simple,
and large chunks of the space of all possible configurations
for t−i are assigned the same utility. (See e.g. Section 4.5.)

4.2. Example: Two Player Double Auction

This auction example is from Gibbons [3, p. 158]. There
is one buyer and one seller. The buyer’s offer price ispb

and the seller’s asking price isps. If pb ≥ ps then trade
occurs at pricep = (pb + ps)/2, otherwise no trade oc-
curs. We specify this mechanism with the following SMPL
program. The players’ valuations are drawn from indepen-
dent uniform distributions on [0,1]. Note that for automated
checking we can only use integer ranges, so we replace the
original type (and price) ranges of [0,1] with the integer
range 0..999. The outcome here is a tuple for each agent.
〈〈1,−pt〉, 〈−1, pt〉〉means that agent 1 gets (1) the item and
pays−pt and agent 2 gives (-1) the item and receivespt.

M0 ::


wait out1 = 0; in2 := 1; wait out2 = 0
pb := out1; ps := out2; pt := (pb + ps)/2;
if pb ≥ ps then P := 〈〈1,−pt〉, 〈−1, pt〉〉
else P := 〈〈0, 0〉, 〈0, 0〉〉

∥∥∥M1 ::
[

choose0..999
]∥∥∥M2 ::

[
wait in2 = 0; choose0..999

]
This mechanism has many BNEs. The following equi-

librium gives the best expected gains for the players.

pb(vb) =
2
3
vb +

1
12

, ps(vs) =
2
3
vs +

1
4

Wherevb andvs are the valuations (types) of the buyer and
seller. This gives the following strategy programs:

Strat1 ::
[

action := 2
3 × value + 1

12

]
Strat2 ::

[
action := 2

3 × value + 1
4

]
In the case of this small number (two) of players, it is

clearly feasible to calculate the expected utility of taking an
action, as we have a single opponent. We simply go through
each of our opponent’s possible types, and find the action he
would take according to the specified strategy, and then we
can calculate our utility from the SMPL program.



4.3. Games With Identical Players

A significant reduction in the number of possible config-
urations fort−i can be achieved by restricting our attention
to games with identical players. In our examples, players’
types are independent so we can simply writepi(ti) for the
probability that playeri takes typeti. All the pi are com-
mon knowledge. If all players have identical type spaces
Ti = T , and probability distributionspi, then the number
of possible distinct type profiles for then−1 opponents be-
comes equivalent to selectingn−1 objects from a choice of
|T | objects where each type can be chosen more than once.
This is

(|T |+ (n− 1)− 1)!
(n− 1)!(|T | − 1)!

=
(|T |+ n− 2)!

(n− 1)!(|T | − 1)!

Note that with the addition of each new player this increases
by a factor of |T |+n−1

n , whereas in the non-identical play-
ers’ worst case scenario the corresponding increase is|T |.
In the identical case, whenn becomes greater than|T |, in-
creasingn increases the overall complexity by a factor of
less than two, which is a significant saving. However, for
large values ofn the problem is still unlikely to be feasible.

4.4. Two Players Determine Outcome

We now look at the class of single-item auctions withn
identical bidders, where a bidder wins only if he is the high-
est bidder, and the price the winner pays is determined by
the first and second highest bids. No losing bidder makes
or receives any payments. The bidders’ types are simply
valuations of the item in this auction; i.e. the bidder prefers
outcomes where he wins the auction and the difference be-
tween his valuation for the item and what he has to pay for
it is greatest. We also restrict the strategy space to those
strategies where the bid is a monotonically increasing func-
tion of the valuation. This is a reasonable assumption in an
auction. To simplify the analysis we construct the mecha-
nism so that if there are two or more bidders having equal
highest bids then no trade occurs. This is unrealistic in auc-
tions, but rectifying it would be simple; however we choose
not to as it complicates the presentation. Types range over
the integers fromvlo to vhi. Bids range over the real num-
bers. Suppose we want to calculate the expected value for
some bidderi if his value isvi and his bid isbi. Clearly
i’s utility is zero if he does not win the auction. The other
cases to consider are each of those where he wins and the
second highest bidder takes each possible value< bi. We
uses∗ to find the highest valuationv for which s∗(v) < bi.
Because of our monotonic strategy function assumption we
know that in order fori to win, all opponents must have
a valuation≤ v. Now for each integer value in the range

[vlo, v] we will calculate the probability of the second high-
est bidder taking that value, and multiply it by the utility
that bidderi would receive.

Let us start with the valuev. We will calculate the prob-
ability that the second highest bidder has valuationv. The
probability that all then − 1 opponent bidders have val-
ues≤ v is (

∑v
x=vlo

p(x))n−1. The probability that none of
these bidders bidsv is(∑v−1

x=vlo
p(x)

/∑v
x=vlo

p(x)
)n−1

Therefore the probability that at least one of them bidsv
is the complement of this event:

1−
(∑v−1

x=vlo
p(x)

/∑v
x=vlo

p(x)
)n−1

Multiplying these we get the probability that the second
highest bid isv, let us call this eventhigh2 = v:

prob(high2 = v) =(
v∑

x=vlo

p(x)

)n−1
1−

(∑v−1
x=vlo

p(x)∑v
x=vlo

p(x)

)n−1


Now we multiply this by the utility obtainedvi − s∗(v):

prob(high2 = v)(vi − s∗(v))

i.e. this is the utility obtained by bidderi if he bidsx, and
the second highest bidder bids just under him, multiplied by
the probability of this occurring. Now we need to sum for
all the possible second highest bids, where the second high-
est bidder takes all valuations in the integer range[vlo, v]:

E(ui(bi, s
∗
−i(t−i); vi)) =

v∑
y=vlo

prob(high2 = y)(vi−s∗(y))

where v is the highest valuation for whichs∗(v) < bi.
Now we will look at the time complexity of an algorithm
to compute the expected utility. We are assuming that we
have a vector which stores all the discretep(x) values for
x in the integer rangevlo . . . vhi. Clearly the summations∑z

x=vlo
p(x) for z = vlo . . . vhi are being used many times,

so it will be efficient to calculate them all and store them in
a vectorSp such thatSpz =

∑z
x=vlo

p(x). Filling this vec-
tor with values can be done invhi − vlo steps. Similarly we
can create a vectorP2 such thatP2z = prob(high2 = z).
given that vectorSp is already computed, vectorP2 can be
computed in time polynomial inn − 1. Now the final sum
for E(ui(bi, s

∗
−i(t−i); vi)) can be computed in polynomial

time if the strategy functions∗ can be computed in polyno-
mial time (a reasonable assumption).

This result does not hold in the case of checking a dom-
inant strategy profile. Dominant strategy profiles are harder



to check because we can make no assumptions about the
opponents’ strategies; we would need to ensure that our
player’s strategy gives him the best outcome, for whatever
strategy profile is played by the opponents.

4.5. Example With Multiple Bidders

The following parameterised SMPL program represents
a first price sealed bid auction. It is parameterised byn, the
number of bidders. Again, we use the integer range 0..999
for the bids. Note that moduleMn+1 is the module deciding
the price the winning bidder will pay. The principal module
M0 determines the winner, and records the two highest bids,
passing them on to moduleMn+1 as a tuple. ModuleMn+1

then simply selects the first part of this tuple (first price) and
returns it toM0. The outcome here only assigns a value for
the winning agent, all otherPi will remain zero.

M0 ::



wait out1 = 0; i := 2;

while i ≤ n do
[

ini := 1; wait out i = 0
i := i + 1

]
i := 1;
while i ≤ n do

if out i > high1 then

 tie := 0
high1 := out i

winner := i


else[

if out i = high1 then tie := 1
if out i > high2 then high2 := out i

]
i := i + 1


inn+1 := 〈high1 , high2 〉; wait outn+1 = 0
if tie = 0 then Pwinner := 〈1,−outn+1〉
elsePwinner := 〈0, 0〉


∥∥∥M1 ::

[
choose0..999

]∥∥∥M2 ::
[

wait in2 = 0; choose0..999
]

...∥∥∥Mn ::
[

wait inn = 0; choose0..999
]∥∥∥Mn+1 ::

[
wait inn+1 = 0; x := inn+1; outn+1 := x1

]
The following is the equilibrium strategy for each agent,
again parameterised byn:

Strat ::
[

action := (n− 1)× value/n
]

The modularisation in the above auction allows it to be eas-
ily generalised to cover the class of single-item auctions
with identical bidders, where a bidder wins only if he is
the highest bidder, and the price the winner pays is deter-
mined by the two highest bids (i.e. any function of the two

highest bids). Agents can call on the trusted library to gen-
erate a version of this specification, instantiatingn for any
desired number of agents, and leavingMn+1 blank. This
means that the pricing rule can be customised as desired; it
can only use the two highest bids however, as that is all that
is input to the moduleMn+1. Hence the mechanism’s equi-
librium can still be verified using the method of Section 4.4.
We must also perform a check on the published strategy to
ensure it is a monotonically increasing function of the valu-
ation; to do this we simply check through all types that can
be input to the strategy and verify that the action (bid) is a
monotonically increasing function.

5. Groves Mechanisms

We can apply a similar modularisation technique to the
class of Groves mechanisms. Groves mechanisms can be
used in a wide variety of auctions, including combinatorial
auctions. In this case we can have separate modules for the
pricing rule and the allocation rule. The allocation prob-
lem for combinatorial auctions is known to be NP-complete
and inapproximable [7]. Verifying this portion of the mech-
anism is therefore not feasible at run-time, and so agents
could rely on a trusted module from the library to perform
the allocation. The pricing rule is left open for the agents
to specialise for their particular scenario, with some restric-
tions as described below. It is the pricing rule that will then
determine the remaining properties of the auction.

Groves mechanisms have the property of being strate-
gyproof (i.e. dominant strategy to bid truthfully); the allo-
cation is done optimally (outcomeo∗), andPT is the pay-
ment transferred to each agenti:

PTi =
∑

j∈N\{i}

v̂j(o∗)− C−i

WhereN is the set of agents,̂vj(o∗) is agentj’s declared
valuation on the allocation andC−i is some quantity inde-
pendent of agenti. Now we can generate a specification for
a mechanism which has a customisable pricing module. The
principal moduleM0 of the mechanism polls the agents for
their bids, and calls the allocation module. Then it calls the
pricing module to calculate a price for each agent, but when-
ever the pricing module is called to calculate the payment
for agenti, it is only passed the declared valuations of the
agents excludingi. This guarantees that the mechanism as
a whole is a Groves mechanism, and hence is strategyproof.

We would also like to guarantee ex-post individual ra-
tionality (this means that the agents are guaranteed not to
get negative utility by participating in the mechanism). To
guarantee this we need to ensure that the following holds:

v̂i(o∗) + PTi ≥ 0



This guarantee can be achieved by including a check in the
module of the principal agent, such that after calling the
pricing module to get the valueC−i, it determines if the in-
equality above holds with the transferPTi; if it does not
hold then the principal cancels the auction and no sale is
made, and all agents receive zero utility. In this way we can
have a protocol in our library which has a fixed principal
module and allocation rule, but which allows the agents to
propose their own customised pricing module; with any ar-
bitrary pricing module, the mechanism still guarantees ex-
post individual rationality and is strategyproof. Most im-
portantly, this is achieved without the agents needing to do
any checking themselves at run-time. This could be used
to implement a broad class of mechanisms, for example the
VCG, or variants where additional transfers occur [1].

6. Conclusion and Future Work

We have broken the problem of achieving common
knowledge in mechanisms into two parts: semantic inter-
operation, and guarantees of compliance. The guarantees
of compliance can be achieved relatively easily, but the se-
mantic interoperation is more problematic. This problem
has been further decomposed into knowledge of the rules
of a mechanism, and knowledge of its properties. We have
provided a simple language which could be used to cap-
ture a class of mechanisms, and to communicate the rules
to agents. We have shown that the problem of determining
the properties of a mechanism is not feasible in the most
general case; however, in certain cases we can achieve it
by communicating some information about the properties
and/or placing certain restrictions on the specification.

Throughout this work there is a tradeoff between hav-
ing a specific mechanism with well known properties, and
having the flexibility to use customised mechanisms (within
some class of mechanisms), whose properties may be more
difficult to determine. Future progress will need to push the
boundaries: increasing both the flexibility and the knowl-
edge of the properties. One extension would be to em-
ploy some of the abstraction techniques used by the model
checking community. For example, our checking of the
equilibrium exhaustively checks each possible bid value,
when in fact all bids below or above a critical threshold
could be lumped together. Ultimately we want to determine
the limits of the approach. We expect that some classes
of auctions will prove difficult to verify automatically, and
that some auctions will only be verifiable if their complex-
ity is limited. When these limits are determined, they can
be used to inform the design of mechanisms for agent sce-
narios where semantic interoperation is desired.
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