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Abstract. There are many significant contributions to the formal study
of norm-governed organisations. A key challenge in this endeavour is to
provide designers and engineers with means to specify normative aspects
of organisations, allowing phenomena such as norm conflict (i.e., an ac-
tion being simultaneously obliged and prohibited), to be captured and
studied. Ideally, any candidate formalism for the specification of organi-
sations should have a sound underlying semantics to guide the verifica-
tion of desirable properties (e.g., an organisation has no conflict among
its norms). In this paper we propose using Semantic Web languages to
represent norm-governed organisations. We represent roles and their re-
lationships, and various kinds of normative notions and power, including
norms with conditions and deadlines. With this representation we are
able to detect norm violations and norm conflict (also pinpointing the
source of the conflict in the organisation). By using description logics
to specify our ontologies, and Semantic Web standards to capture our
rules, our approach benefits from off-the-shelf technologies such as rea-
soners and rule engines, which we deploy to verify organisations and infer
implicit knowledge from them.

1 Introduction

Organisations are working together in e-business, e-markets, or other domains;
they have to coordinate with each other and describe their processes in a machine-
understandable way to share and re-use information. They are required to work
in open environments which are dynamic and unpredictable. This requirement
is compatible with the vision of the Semantic Web [6], which aims to support
organisations operating in open environments to share knowledge and process
information automatically.

A norm-governed organisation can be expressed in terms of a set of agents
(the members of a society), a set of constraints on a society, a set of roles that
members can play, a communication language, relationships between roles, as
well as the structure of a society [3]. Members of a society are autonomous; they
may be self-interested and deviate from expected behaviours. To express the ex-
pectation that agents’ behaviour follows the constraints of a society, we should
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not restrict the autonomy of those agents. We should rather specify what is per-
mitted, prohibited and obligatory, and other normative relations (such as duty,
right, privilege, authority and etc.) that may exist between agents, and leave it
to these agents to decide what to do given these constraints. A key challenge
in this endeavour is to provide designers and engineers with means to specify
normative aspects of organisations, allowing phenomena such as norm conflict
(i.e., an action being simultaneously obliged and prohibited), to be captured and
studied. Ideally, any candidate formalism for the specification of organisations
should have a sound underlying semantics to guide the verification of desirable
properties (e.g., an organisation has no conflict among its norms).

In this paper we propose using ontologies and rules to represent norm-
governed organisations. Ontologies, partially machine understandable, are play-
ing an important role in automated processes (aka. “intelligent agents”) to ac-
cess information. In particular, ontologies provide formally structured vocabu-
laries that explicate the relationships between different terms, so that intelligent
agents can interpret their meaning flexibly yet unambiguously [13]. OWL-DL,
a W3C recommendation from 2004, is a decidable fragment of first-order logic
and has desirable computational properties for reasoning systems [5]. However,
OWL reasoning and editing tools do not support temporal representation, which
is essential in the representation of norm-governed systems. To these ends we
use the Semantic Web Rule Language! (SWRL). SWRL combines OWL and
RuleML, and reasoning on SWRL-enable ontologies is supported by existing DL
reasoners?. SWRL can be used to represent temporal information3. Hence our
formalism is able to express conditional and temporal aspects of norms.

We will illustrate that ontologies and rules provide a means of implementing
an expressive and decidable organisation specification [3, 8] that captures:

— roles and role classification;

— institutionalised powers;

— permissions, prohibitions and obligations of the agents;

— violations that agents perform certain forbidden actions or do not comply
with their obligations;

— temporal relationships, the violation of norms could be dependent on tem-
poral constraints such as norm deadlines and activation times.

This paper is organised as follows: In Section 2 we briefly introduce ontolo-
gies and rules. In Section 3 we describe the representation of a norm-governed
organisation using ontology languages, and show how to detect the violations
of norms in Section 4. Section 5 describes how to reason with axioms to detect
contradictions between norms. We compare our approach with existing work in
Section 6. We conclude in Section 7, point our directions for future work.

2 Ontology and Rules

The OWL-DL [12] ontology language is a variant of SHOZN (D) [14] Description
Logic, which provides constructs for full negation, disjunction, a restricted form

! http://www.w3.org/Submission/SWRIL/
2 Pellet and KAON2 support a subset of SWRL called DL-safe rules.
3 http:/ /protege.cim3.net /cgi-bin /wiki.pl?SWRLTemporalBuiltIns



of existential quantification, and reasoning with concrete datatypes. We make
use of the Open World Assumption, which requires that something is false if and
only if it can be proved to contradict other information in the ontology. Since
we assume a MAS as an open system, its knowledge of the world is incomplete,
and the knowledge is extendable. If a formula cannot be proved true or false, we
do not draw any conclusion®.

Formally, an ontology O consists of a set of terminology axioms 7 (TBox)
and assertional axioms A (ABox), that is, O = (T, A). An axiom in 7 is either
of the form C' C D or C = D, where C and D are arbitrary concepts (aka. classes
in OWL); an axiom in A is either of the form C(a) (where C is a concept and
a is an individual name; a belongs to C), or of the form R(a,b) (where a,b are
individual names (aka. instances in OWL) and R is a role name (aka. a datatype
or object property in OWL); b is a filler of the property R for a).

The meaning of concepts, roles and individuals is given by an interpretation.
An interpretation T = (A%, -T) consists of a non-empty set of individuals (the
domain of the interpretation) and an interpretation function (-I), which maps
each atomic concept CN € C (C is a set of concept names) to a set CNZ C A?
and each atomic role R € R (R is a set of role names) to a binary relation
RT C AT x AT. The interpretation function can be extended to give semantics to
concept descriptions. An interpretation Z is said to be a model of a concept C, or
7Z models C, if the interpretation of C' in Z is not empty. Based on this semantics
a TBox can be checked for incoherence, i.e., whether there are unsatisfiable
concepts:

1. A concept A is unsatisfiable w.r.t. a terminology 7 if, and only if, AT = ()
for all models of Z of 7.

2. A terminology 7 is incoherent if there exists a concept name in 7", which is
unsatisfiable.

3. An ontology O = (T, A) is inconsistent if it has no models.

OWL DL benefits from many years of DL research, the benefits include well
defined semantics, well-studied reasoning algorithms, highly optimised systems,
and well understood formal properties (such as complexity and decidability) [4].

The Semantic Web Rule Language (SWRL) extends the set of OWL axioms
to include Horn-like rules that can be expressed in terms of OWL concepts and
that can reason about OWL individuals. SWRL provides deductive reasoning ca-
pabilities that can infer new knowledge from an existing OWL knowledge base.
However, OWL DL extended with SWRL is no longer decidable. To make the
extension decidable, Motik et al. [21] proposes DL-safe rules where the applica-
bility of a rule is restricted to individuals explicitly named in a knowledge base
(KB). For example:

parent(x,y) A brother(y,z) AO(x) AO(y) AO(z) — uncle(x,z)

4 We can reason an inconsistent ontology by tolerating the contradictions. A formula
is undefined (or undertermined) if it entails neither true nor false; a formula is
overdefined (or over-determined) if it entails both true and false. In the case of
undefined permission axioms, we can model the axioms as weak permission. We will
further discuss the distinction between weak permissions and strong permission in
future research.



where O(z) for each explicitly named individual z in the ontology. O is not a
concept from the OWL DL ontology. Hence, DL-safe rules are SWRL rules that
are restricted to known individuals.

We use SWRL to specify temporal constraints and rules found in our on-
tologies in terms of the temporal model. Using SWRL’s temporal built-in ex-
tension facility, we are able to express complex temporal constraints in rules.
SWRLTab®, an editor for SWRL rules in Protégé-OWLS, contains the temporal
built-ins. It defines a set of built-ins that can be used in SWRL rules to perform
temporal operations. These built-ins are defined in the SWRL Temporal Ontol-
ogy”. It has the default prefix temporal. Some examples of temporal operators
are temporal:before(x, '2008-12-22"), temporal:after(x,y) and temporal:during(2, x,
temporal:Years)S.

3 Norm-Governed Organisations

In this section, we describe how to represent roles, role classification, norms,
power, and task descriptions using OWL and SWRL. Norms are further de-
scribed with conditions and deadlines.

3.1 Roles and Role Classification

The ontology we propose in this paper models the concepts of an agent, its role
classification(s), restrictions on roles (such as mutually exclusive roles, cardinal-
ity, prerequisite roles), and other aspects of the organisation. Roles are modeled
in a classification to reflect the generalisation of role descriptions. Sub-roles in-
herit the properties from the super-roles; the properties of a sub-role override
those of its super-roles. Maximum and minimum cardinality restrictions can be
used to restrict the number of roles that an agent can take, and the number of
agents that can be assigned to a particular role”, and the number of roles a per-
mission can be assigned to. The disjointness axioms in ontologies can represent
separation of duty restrictions, which aim to prevent conflict of interests that
arise when an agent gains permissions associated with conflicting roles (roles
that cannot be assigned to the same agent). We now give an example specifica-
tion to illustrate this. In Figure 1, a role classification is shown. The role Staff
is the most general role; the role AccountingManager (sub-role), is more specific
than Manager (super-role). Sub-roles inherit the properties from super-roles. For
example, Staff are obliged to work from 9am to 5pm during weekdays; its sub-
roles inherit this obligation. The properties of a sub-role override those of its
super-role (see axioms 4 and 5 below). For the cardinality restrictions, we can
model that only one agent can fill the role of the general manager (see axioms 11
and 12 below); a member of a staff works in exactly one department (see axiom
6 below). The range of worksln is Department. An example of mutually exclusive
roles is that a department manager cannot be a general manager simultaneously

® http://protege.cim3.net /cgi-bin /wiki.pl?SWRLTab

5 http://protege.stanford.edu/overview/protege-owl.html

" http://swrl.stanford.edu/ontologies/built-ins /3.3 /temporal.owl

8 Currently, no DL reasoner supports this temporal built-ins reasoning.

9 Possibly the most useful of these is the distinction between roles which can only have
one agent assigned to them, and roles which accept many agents simultaneously.



(see axiom 8 below). An example of separation of duty is that, a staff submitting
a project proposal cannot be the staff who approves the proposal (see axiom 9
below). Prerequisite roles means that a person can be assigned to role r1 only if
the person already is assigned to role 72 (see axiom 10).

(1) Programmer LI Manager C Staff

(2) DeptManager LI GeneralManager C Manager

(3) AccountingManager C DeptManager

(4) Manager C 3 isPermitted.(3 employs.Staff)

(5) AccountingManager C 3 isPermitted.(3 employs.AccountingStaff)
(6) Staff C =1 worksln

(7) range(worksln) = Department

(8) DeptManager C — GeneralManager

(9) Staff(x) A ProjectProposal(p) A submits(x,p) A approves(x,p) AO(x) AO(p) — owl:Nothing(x)
(10) AccountingManager C 3 prerequisites.Accountant

(11) GeneralManager C =1 takenBy

(12) range(takenBy) = Agent

(13) domain(takenBy) = Role

(14) domain(worksln) = Staff

Staff

Programmer Manager

GeneralManager
AnalystProgrammer DeptManager

SeniorProgrammer/ \

AccountingManager  ITManager

Fig. 1: Roles and a Role Classification

In our formalisation we do not attempt to be prescriptive — we are aware that
there could be many other alternative formalisations. We merely aim to illustrate
the possibilities of Semantic Web languages for representing organisations.

3.2 Normative Notions and Institutional Power

A number of studies have proposed models for the specification of norms. Some
models focus principally on formalising the three basic deontic notions of obliga-
tions, prohibitions and permissions, so that it is possible to reason about agents’
behaviour and detect the violation of norms; additionally verification is possible
using formal theorem provers.

We firstly describe norms concerning agents performing some action Act. The
norm on the execution of Act is timeless, that is, the norm is active all the time.
A simple and intuitive syntax for unconditional permissions and prohibitions is
given in [25]:



PERMITTED(a DO A), FORBIDDEN(a DO A)
We choose this notation here for its simplicity. In OWL, the norms are modeled
as:

Agent C 3 isPermitted.Act

Agent C 3 isProhibited.Act, where Agent and Act are OWL concepts, isPermit-
ted and isProhibited are OWL object properties; their domain and range is Agent
and Act respectively.

Permissions allow the agent to achieve a state of affairs or perform an action.
Permission is distinct from power because a member may be empowered to do
something even though he is not permitted. The following axiom and rule mean
that a finance secretary has permission to query the finance account in the
department which the secretary works in.

QueryFinanceAcctAct = 3 queries.FinaceAccount
FinanceStaff(fs) A worksIn(fs,fdept) A hasAccount(fdept,facct) A QueryFinanceAcctAct(act)
A queries(act,facct) AO(fs) AO(fdept) AO(facct) AO(act) — isPermitted(fs,act)

Prohibitions forbid the agent from achieving a state of affairs or performing
an action. The following axiom means that a finance staff is prohibited from
approving travel request forms.

ApproveTravelAct = 3 approvesTravelReq.TravelRequestForm
FinanceStaff C 3 isProhibited. ApproveTravel Act

An obligation indicates some act has to be done. For example, ‘staff are
obliged to work in weekdays from 9am to 5pm’. This obligation is always true.

Staff C 3 isObliged.(3 works.(3 hasDays.Weekdays M 3 hasHour.OfficeHour))
Weekdays = {Monday Tuesday Wednesday Thursday Friday}
OfficeHour = Fstarts.{"09:00:00" "~ ( xsd:time) } M 3 ends.{ “17:00:00" " ( xsd:time) }

It is common to specify a time-limit or a condition for obligations, so that
we can test agents’ compliance over a finite run of a system. It is no good for
an agent to promise something and deliver it “eventually”, if there is no upper
bound on the time taken. We will describe these constraints in the next section.

We now model the relations between the three basic notions; the relations
can be equivalence, compatibility or incompatibility (or conflict). The following
rules list some of these relations [26].

1. If an act is permitted, then it is not prohibited.
isPermitted(x,act) A isProhibited(x,act) AO(x) AO(act) — owl:Nothing(x)
2. If an act is obligatory, then it is permitted.
isObliged(x,act) AO(x) AO(act) — isPermitted(x,act)
3. If an act is obligatory, then it is not prohibited.
isObliged(x,act) A isProhibted(x,act) AO(x) AO(act) — owl:Nothing(x)
4. If a prohibited act is performed then there is a violation.
performed(x,act) A isProhibited(x,act) AO(x) AO(act) — violated(x,act)



Note that compared to deontic logic, here these deontic notions are being given
a different interpretation by description logic. For example in deontic logic we
could say that “obliged” is equivalent to “not permitted not to”, however in
description logic we cannot express this. SWRL does not allow us to negate the
atoms within the scope of isPermitted(. . .).

In this paper we define power as the ability of an agent to bring about cre-
ation of, or changes in, facts in the knowledge base. An action is valid at a point
in time if and only if the agent that performed that action had the institutional
power to perform it at that point in time [3] (cf. the importantly different no-
tional of institutional power characterised by Jones and Sergot [15]). For example
we say that that action ‘manager x fires staff y’ is valid if = is empowered to fire
a staff at that time, therefore y is no longer a staff. Otherwise, it is an invalid
action due to its lacking of institutional power. In OWL, we model ‘power’ as an
object property hasPower; its domain and range is Agent and Act respectively.
The following axiom means a manager has power to fire a staff.

Manager C 3 hasPower.(3 fires.Staff)

When a person is fired, we have to update the ABox to state the person is
no longer a staff in the company. The ABox is only updated if an agent has a
power to perform some action and has performed that action; otherwise nothing
is changed in the ABox.

3.3 Norm with Conditions and Deadline

Norms can be conditional or can have temporal constraints, that is, they estab-
lish relationships between time-points or events or they hold periodically [10].
We now show how our approach captures these normative notions.

Conditional Norms The norm concerning an action A is conditional under
some circumstance C. A simple example is again given in [25]; these norms are
defined as:

OBLIGED((a DO A) IF ¢),  PERMITTED((a DO A) IF C),

FORBIDDEN((a DO A) IF C)
In OWL, we can place additional restrictions to axioms to introduce the condi-
tion of axioms to be applied.

Agent C 3 isPermitted.(Act M 3 hasCond.Cond)

Agent C 3 isProhibited.(Act M 3 hasCond.Cond)

Agent C 3 isObliged.(Act M 3 hasCond.Cond)

For example, staff is permitted to take sick leave with the doctor’s approval,
where DoctorApproval is the condition. This is formalised as:

Staff C 3 isPermitted.(3takes.SickLeave M 3 hasCond.DoctorApproval)

Another example, staff is prohibited to take a elevator or escalator if there
is a fire. This is formalised as:



Staff C 3 isProhibited.(3takes.(Elevator LI Escalator) M 3 hasCond.OnFire)

Conditional Norms with deadlines. This conditional norm is defined with
a deadline, which can be either an absolute or a relative deadline. A simple ex-
ample is again given in [25]:

PERMITTED(a DO A BEFORE D), FORBIDDEN(a DO A AFTER D)
For conditional norms with absolute deadlines, we can represent them as follows:

Agent C 3 isObliged.(Act M 3 before.Deadline)
Agent C 3 isProhibited.(Act M 3 after.Deadline)

For example, an I'T'Staff is obliged to update the web server before a deadline.
ITStaff C 3 isObliged.(Jupgrades.WebServer 1 Jbefore.Deadline)

Note that before and after are OWL object properties; their domain and range
is Act and xsd:dateTime respectively. To detect whether the current date/time
is before or after the deadline, a DL reasoner has to be extended to reason with
this temporal knowledge.

For conditional norms with a relative deadline, we use SWRL to specify tem-
poral constraints and rules found in our ontologies in terms of the temporal
model. SWRL Temporal Ontology!® is a SWRL built-in extension to address
temporal relationships and reasoning. For example, the department manager is
obliged to approve travel request forms. The deadline to approve a form should
be five days after the form is submitted. We capture this via the rule:

ApproveTravelRequestTask = 3 approvesTravelReq.TravelRequestForm
DeptManager(mngr) A ApproveTravelRequestTask(task) A TravelRequestForm(form)
A submittedDate(form,date) A submittedTo(form, mngr) AO(mngr)

A CurrentDateTime(now) AO(task) AO(form) AO(date) AO(now) A
swrl:addDayTimeDurationToDate(deadline,date,xsd:day TimeDuration( “P5D"))

— isObliged(mngr,task) A before(task,deadline)

The ontology and rules describe static knowledge; i.e., it can give a snapshot

of the state of the agent system at some time. When agents are acting at run
time, we assume there is a program which updates the ABox appropriately
to record performed actions and performed date time; for example Agent C 3
performed.(Action M 3 perfomedTime.DateTime).
The domain and range of perfomedTime is Act and xsd:dateTime respectively.
The compliance with obligations can thus be checked by querying the ABox
of the ontology. For example, when agents perform their obligatory actions,
their obligation axioms are removed from the ABox (i.e., the information of the
obligatory action does not exist in the ABox anymore); if agents perform their
prohibited actions, the violations of their behaviours are updated in the ABox
(see rule (4) in Section 3.2).

10 http://swrl.stanford.edu/ontologies /built-ins/3.3 /temporal.owl



4 Detection of Violations

We have described how to define restrictions on the behaviours of agents. We
now describe how we can detect the violation of these restrictions. If an agent
violates an act which is defined in the norms, then we update the ABox, i.e.,
violated(agent,act) is added to the ABox. The domain and range of violated is
Agent and Act respectively.

It is easy to detect the violation of prohibitions in the ontology. The pro-
hibition axioms are of the form Agent C 3 isProhibited.Actl; the axioms which
record agents performed some action are of the form Agent C 3 performed.Act2.
If Act2 C Actl, then there is a violation; if Actl C Act2, then we need to check
whether the instance of Act2 is equivalent to that of Actl. For example, finance
staff is prohibited from purchasing computer equipment. If a staff working in the
finance department purchased a printer which is a subclass of computer equip-
ment, then a DL reasoner can infer the implicit information that the staff is
prohibited from purchasing the printer; hence there is a violation.

To detect the violation of obligations which are always valid, we query the
ABox corresponding to the obligation axiom. For example,

Manager C 3 isObliged.AttendMeetingAct
AttendMeetingAct = 3 attends.AGMeeting

We check if attends(attendAct, meeting342) and performed(agentX,attendAct)
are in the ABox, where attendAct € AttendMeetingAct, meeting342 € AGMeeting,
agentX € Manager. If there are no such axioms, it means agentX did not attend
meetingJuly; and hence there is a violation.

The conditional obligation axioms are of the form Agent C 3 obliged.(Act M
Cond). If there exists an instance of the concept Cond, and no axiom in the ABox
such that performed(agentX, actionX) where agentX € Agent and actionX € Act,
then the agent agentX violates the obligation.

The conditional obligation with absolute deadline axioms are of the form
Agent C 3 obliged.(Act M 3 before.Deadline). The following SWRL rule checks if
the agent performs the obligation after the required deadline:

Agent(ag) A Act(act) A isObliged(ag,act) A performed(ag,act) A performedTime(act,time)
A before(act,deadline) A temporal:after(time,deadline) AO(ag) AO(act) AO(time) AO(deadline)
— violated(ag,act)

If the agent does not perform the obliged act, then performed(?ag,?act) does
not exist in the ABox. While SWRL does not support negated atoms, we cannot
state if there does not exist performed(?ag,?act) in the ABox when the deadline
is passed. To address this limitation, we use a SPARQL query to check this after
the deadline. If the query returns empty set, then agent violates the obligation.



PREFIX org:{http://www.csd.abdn.ac.uk/~jlam/organisation.owl)
SELECT 7agent ?act
WHERE { ?agent org:performed ?act }

5 Reasoning

One advantage of OWL ontologies is the availability of tools that can reason
with and about them. OWL DL is a version of OWL retaining computational
completeness (all conclusions are guaranteed to be computable) and decidability
(all computations will finish in finite time) [5]. Most ontology designers find it
difficult to understand the logical meaning and potential statements inferred in
description logics, including OWL DL [22]. Contradictions between axioms can
occur easily, and this is also a concern for norms in agent systems. Kollingbaum
and Norman [19], for example, use the term conflict for situations when an
action is simultaneously permitted and prohibited, while the term inconsistency
is applied to situations when an action is both obliged and prohibited.

In the following we show two examples of conflict and inconsistency. The
issue we would like to emphasise here is that the clash of norms might not be
immediately obvious to a knowledge engineer — there are no two norms that
directly clash — the clash is detected only after the reasoner has inferred implicit
information in the ontology. To detect these contradictions in the ontology, we
make use of existing DL reasoners such as Pellet!! and KAON2'2? which support
DL-safe subset [21] of SWRL rules. For a large ontology with hundreds of axioms,
it is useful to pinpoint which axioms actually caused the contradictions. We make
use of existing ontology debugging techniques [18,20] which not only detect
unsatisfiable concepts, but also pinpoint the set of problematic axioms for the
contradictions.

Ezxample 1. This is a conflict example. We assume an ontology which contains
all axioms introduced above and the following additional axioms. By using DL
reasoners and debugging techniques, we conclude that the concept Staff is un-
satisfiable, and the following six axioms cause the problem.

(1) Staff C 3 isProhibited.WasteResources

(2) Staff C 3 isPermitted.PrintDocuments

(3) Papers C Resources

(4) isPermitted(x,act) A isProhibited(x,act) AO(x) AO(act) — owl:Nothing(x)
(5) WasteResources = 3 consumes.Resources

(6) PrintDocuments C 3 consumes.Papers

When a smaller subset of axioms is produced as the cause of contradiction, it
is easier for the knowledge engineer to understand the reason for contradictions.
The above axioms state that staff are permitted to print documents, which
implies consuming papers; at the same time, staff are prohibited from wasting
resources, which includes consuming papers. This results in a conflict.

1 http://pellet.owldl.com
12 http://kaon2.semanticweb.org/



Ezample 2. This is an inconsistency example. Similarly, by using reasoners and
debugging techniques, we obtain the set of axioms which cause the inconsis-
tency and infer the reason: a manger is obliged to approve travel request forms,
a department manager is a type of manager. However, a department manager is
prohibited from approving the travel request form which is requested by himself.
Using reasoners, the following axioms causing the inconsistency are listed:

(7) Manager C 3 isObliged. ApprovalTravelAct

(8) DeptManager C Manager

(9) ApprovalTravelAct = 3 approvesTravelReq. TravelRequestForm

(10) DeptManager(mng) A TravelRequestForm(form) A ApproveTravelAct(act) A approves-
TravelReq(act,form) A requestedFrom(form,mng) A performs(mng,act) AO(mng) AO(form)
AO(act) — SelfApprovalTravelAct(act)

(11) DeptManager C 3 isProhibited.SelfApproval TravelAct

(12) obliged(x, act) A isProhibited(x,act) AO(x) AO(act) — owl:Nothing(x)

5.1 Dealing with Inconsistency

There are many ways to deal with inconsistency of norms. We can assign priority
(or importance) to the axioms, and choose to ignore the lowest priority or the
lowest importance. To do so in OWL, we can tag the axioms with a priority
index, and ignore the one with the lowest index, when the problematic axioms
are pinpointed by DL reasoners.

Vasconcelos et al. [23] propose another method to resolve the conflicts in a
set of norms, the authors curtail the influence of the prohibition. The curtail-
ment of the prohibition eliminates the intersection: it moves the scope of the
norm influence to outside the influence of the permission. In their approach,
prohibitions are always curtailed. We can achieve the curtailment in OWL by
weakening the restriction of the axioms or raising an exception in the axioms.
Given two inconsistent axioms:

(1) Agent C 3 obliged.Actl
(2) Agent C 3 isProhibited.Act2

If Actl M Act2 # 0, we can weaken the restriction of the prohibition or
obligation axiom, such that Agent C 3 obliged.(Actl M — (Actl M Act2)) or Agent
C 3 isProhibited.(Act2 M — (Act2 M Actl)). The option of curtailing obligations
or prohibitions is left to ontology designers.

The third approach [24] extends the work of [23]. Curtailment policies are
introduced to explicitly state which norm should be removed. Given two norms
in conflict, the norm is to be curtailed if its time of declaration precedes that of
another norm. It will be worthwhile for us to consider the time of declaration of
norms in our approach in future work.

To resolve the conflict of the department manager’s obligation and prohibi-
tion in Example 2, we can add an axiom such that:

(13) DeptManager C 3 isObliged.(ApprovalTravelAct M — SelfApprovalTravelAct)



Now department managers are obliged to approve travel request forms, except
for the forms requested from themselves. This axiom overrides the obligation of
manager (axiom 7 above).

If a department manager issues a travel request form, the ontology does not
explicitly state who is responsible for the approval. Axiom (7) in Example 2 states
managers are obliged to approve travel request form; this obligation applies to
its sub-roles, i.e., DeptManager and GeneralManager. DeptManager overrides this
obligation with an exception (axiom (13) above). GeneralManager still inherits
this obligation, therefore, GeneralManager is obliged to approve the request forms
from DeptManager.

6 Related Work

The work on norms in multi-agent systems and norm formalisation has emerged
as an essential research area in the last few years. In this section, we summarise
the literature briefly and compare it with our work,

Vézquez-Salceda et al. [25] provides a norm formalisation that includes con-
ditional and temporal aspects. The paper focuses on norm enforcement which
include the detection of norm violations and the repair plan. The repair plan
contains sanctions to punish the violator and a set of actions to recover the
system from the violation. The authors list a number of situation for detecting
violations, i.e., detecting the violations all the time, or when the system is not
busy, periodic schedules, and random checking. For repair plans, an example is
given to illustrate how a set of actions can solve the violated situation. In our
approach, enforcement of norms, sanctions and repair plans are not mentioned.
To check the violation of conditional norms, we need to detect when certain
conditions are fulfilled; to check the norms with deadlines, the program needs
to keep track of the current date time and the deadline. However, it will be
costly to make the program check the condition and deadline all the time. It is
our future work to investigate the implementation of norm enforcement mecha-
nism. Furthermore, their formalism is machine-readable; our semantic approach
is partially machine-understandable, that means, agents are able to (1) imple-
ment reasoning to detect inconsistencies and infer implicit knowledge; (2) share
and re-use information with other organisations.

Artikis et al. [1,2] propose two alternative languages for the formalisation of
norm-governed computational systems - the event calculus or the C+ language.
Obligations, permissions, prohibitions, capabilities, empowerment and sanctions
are expressed as changing predicates called fluents. The formalism focuses on
norms triggered by actions, it does not explicitly state the temporal interval
associated with a permission, obligation, or a power. This interval is implicitly
defined by constraints that initiate and terminate the permission, obligation
or power. The authors state that they are still experimenting with the use of
standard model checking techniques to prove general properties of a society
specification, such as the consistency of a protocol specification (no agent is
forbidden and obliged to perform an action at the same time).

Garcia-Camino et al. [9] introduces a normative language which is expressive
enough to represent a MAS normative framework. The language captures the
deontic notions of permission, prohibition and obligation in several cases such as
absolute norms, conditional norms, norms with deadlines and norms in temporal



relation with other events. The defined norms are executable by translating into
Jess. Their work supports action-dependent and time-dependent norms which
include BEFORE, AFTER and BETWEEN, such as OBLIGED (utter(s, w, 1)
BETWEEN ¢1,¢2). The expressions for action-dependent norms and the BE-
TWEEN operator are our future work. Also, they do not cover checking contra-
dictions in norms; we make use of DL reasoners to detect the contradictions and
infer implicit knowledge.

In OperA [8], roles are described in terms of objectives, sub-objectives, norms,
rights and the type of enactment. Roles can be organized into groups. The aim is
to provide means to collectively refer to a set of roles, the norms in a group hold
for all roles in the group. Compared to our approach, we can use ontologies to de-
scribe role definitions in OperA, where the objectives, sub-objectives, rights and
norms are described by OWL axioms or SWRL rules. The relationship between
objectives and sub-objectives are represented as superconcepts and subconcepts
in a classification hierarchy. In OperA the sub-roles of Manager inherit all of its
norms and rights. The definition of groups is done in a similar fashion to our
super-roles in the role classification. The terms compatibility and consistency are
introduced in OperA. An agent is compatible with a role when the goals of the
agent are a subset of the objectives of the role; an agent is consistent with a role
if the goals of the agent do not conflict with the objectives and norms of the
role. However, the consistency between the norms of a role is not covered; this
consistency checking will be important for system designers in order to discover
if a role has implicit contradictions within itself, with respect to the norms it is
placing on agents occupying the role.

Grossi et al. [11] propose that institutions can be based on ontologies, and
these ontologies are contextual. A notion of contextual ontology is introduced,
ontologies are used by institutions to determine the meaning of concepts used in
the norms under different contexts. To define an elnstitution’s ontology, several
contextual ontologies should be considered, because a context may contain other
(sub)contexts or belong to one or several (super)contexts. That means, one needs
to create some links from the ontologies of different supercontexts to the institu-
tional ontology; and so terms in the institutional ontology are inherited from its
supercontexts. Different institutions can implement the set of norms in different
ways; the formalism in [11] enables the possibility of representing and reasoning
about divergent ontologies from different institutions. Their future work is to
extend the framework with more normative reasoning issues, such as reasoning
with violations and reasoning with instances of concepts. The difference of their
work and our work is that they aim to support ontological discrepancies via
contextual subsumption relations, i.e., inheritance from supercontexts, and then
reason about these divergent ontologies. We focus on one single organisation rep-
resented in an ontology, in which reasoning about norms and inferring implicit
knowledge are enabled.

Kagal and Finin [16] describe how ontologies can help in developing high level
policies that are independent of the specific agent communication language being
used. Their framework is implemented in Rei [17], in which a policy language
is described in OWL. Rei extends OWL in order to support rule-based policies;
it has a reasoning engine for OWL and RDF, enabling it to understand and
reason over policies and specifications defined in both OWL and RDF. To resolve



conflicts between policies, their framework includes meta-policies which include
setting modality precedence and stating the priority between rules. Our approach
is similar to some extent that using ontologies to represent policies and deontic
concepts, it is possible to reason over the current obligations or permissions to
perform an action or a speech act, even through there exist conflicts between
policies.

7 Conclusion and Future Work

In this paper we have demonstrated that Semantic Web languages are sufficiently
expressive to capture many of the important concepts underpinning organisa-
tional models of multi-agent systems. Our proposal includes a rich representation
for roles and their relationships, and allows us to capture various kinds of nor-
mative notions and power, including norms with conditions and deadlines, and
the definition of restrictions on unwanted behaviours in agents. By using descrip-
tion logics to specify our ontologies, and Semantic Web standards to capture our
rules, our approach benefits from off-the-shelf technologies such as reasoners and
rule engines, which we deploy to verify organisations and infer implicit knowl-
edge from them. For example, we have shown how to reason about such things
as consistency of norms, and to uncover implicit information revealing contra-
dictions, also pinpointing the source of the conflict in the organisation; many
have ignored these issues in MAS research thus far. Other advantages of using
Semantic Web languages are making use of existing techniques in the Semantic
Web community. For example, if two organisations are going to be merged, we
can use existing ontology merging techniques.

Finally, we note that deontic logic gives quite a different semantics to norma-
tive notions; we merely aim to formalise a basic approximation of these notions,
which could be of practical use in agent systems. For example, there are very ba-
sic deontic logic statements such as those describing contrary-to-duty situations
(see Chisholm’s paradox [7]) which are not considered in our work. In future
work, we would like to extend our approach to support a wider range of norms
such as right, duty, delegation, representation and entitlement.
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