KMS states on self-similar groupoid actions

Mike Whittaker (University of Glasgow)

Joint with Marcelo Laca, Iain Raeburn, and Jacqui Ramagge

Workshop on Topological Dynamical Systems and Operator Algebras

2 December 2016

Plan

1. Self-similar groups

2. Self-similar groupoids

3. C^* -algebras of self-similar groupoids

4. KMS states on self-similar groupoids

1. Self-similar groups

- R. Grigorchuk, On the Burnside problem on periodic groups, Funkts.
 Anal. Prilozen. 14 (1980), 53–54.
- R. Grigorchuk, *Milnor Problem on group growth and theory of invariant means*, Abstracts of the ICM, 1982.
- V. Nekrashevych, Self-Similar Groups, Math. Surveys and Monographs, vol. 117, Amer. Math. Soc., Providence, 2005.

Self-similar groups

- Suppose X is a finite set of cardinality |X|;
 - let X^n denote the set of words of length n in X with $X^0 = \emptyset$,
 - let $X^* = \bigcup_{n>0} X^n$.

Definition

Suppose G is a group acting faithfully on X^* . We say (G,X) is a self-similar group if, for all $g \in G$ and $x \in X$, there exist $h \in G$ such that

$$g \cdot (xw) = (g \cdot x)(h \cdot w)$$
 for all finite words $w \in X^*$. (1)

Faithfulness of the action implies the group element h is uniquely defined by $g \in G$ and $x \in X$. So we define $g|_x := h$ and call it the restriction of g to x.

Then (1) becomes

$$g \cdot (xw) = (g \cdot x)(g|_x \cdot w)$$
 for all finite words $w \in X^*$.

Self-similar groups

We may replace the letter x by an initial word $v \in X^k$: For $g \in G$ and $v \in X^k$, define $g|_v \in G$ by

$$g|_{v}=(g|_{v_1})|_{v_2}\cdots|_{v_k}.$$

Then the self-similar relation becomes

$$g \cdot (vw) = (g \cdot v)(g|_v \cdot w)$$
 for all $w \in X^*$.

Lemma

Suppose (G,X) is a self-similar group. Restrictions satisfy

$$|g|_{vw} = (g|_v)|_w$$
, $|gh|_v = g|_{h\cdot v} h|_v$, $|g|_v^{-1} = g^{-1}|_{g\cdot v}$

for all $g, h \in G$ and $v, w \in X^*$.

Example: the odometer

- Suppose $X = \{0,1\}$ and Aut X^* is the automorphism group.
- ullet Define an automorphism in Aut X^* recursively by

$$a \cdot 0w = 1w$$
 $a \cdot 1w = 0(a \cdot w)$

for every finite word $w \in X^*$

• The self-similar group generated by a is the integers $\mathbb{Z}:=\{a^n:n\in\mathbb{Z}\}$, and (\mathbb{Z},X) is commonly called the odometer because the self-similar action is "adding one with carryover, in binary."

Example: the Grigorchuk group

- Suppose $X = \{x, y\}$ and Aut X^* is the automorphism group.
- The Grigorchuk group is generated by four automorphisms $a, b, c, d \in Aut X^*$ defined recursively by

$$a \cdot xw = yw$$
 $a \cdot yw = xw$
 $b \cdot xw = x(a \cdot w)$ $b \cdot yw = y(c \cdot w)$
 $c \cdot xw = x(a \cdot w)$ $c \cdot yw = y(d \cdot w)$
 $d \cdot xw = xw$ $d \cdot yw = y(b \cdot w)$.

Proposition

The generators a, b, c, d of G all have order two, and satisfy cd = b = dc, db = c = bd and bc = d = cb. The self-similar action (G, X) is contracting with nucleus $\mathcal{N} = \{e, a, b, c, d\}$.

Properties of the Grigorchuk group

Theorem (Grigorchuk 1980)

The Grigorchuk group is a finitely generated infinite 2-torsion group.

Theorem (Grigorchuk 1984)

The Grigorchuk group has intermediate growth. (Solved a Milnor problem from 1968)

Example: the basilica group

- Suppose $X = \{x, y\}$ and Aut X^* is the automorphism group.
- Two automorphisms a and b in Aut X* are recursively defined by

$$a \cdot xw = y(b \cdot w)$$
 $a \cdot yw = xw$
 $b \cdot xw = x(a \cdot w)$ $b \cdot yw = yw$

for $w \in X^*$.

- The basilica group B is the subgroup of Aut X^* generated by $\{a,b\}$. The pair (B,X) is then a self-similar action.
- The nucleus is $\mathcal{N} = \{e, a, b, a^{-1}, b^{-1}, ba^{-1}, ab^{-1}\}.$

Properties of the basilica group

Theorem (Grigorchuk and Żuk 2003)

The basilica group

- is torsion free,
- has exponential growth,
- has no free non-abelian subgroups,
- is not elementary amenable.

Theorem (Bartholdi and Virág 2005)

The basilica group is amenable.

2. Self-similar groupoids

- E. Bédos, S. Kaliszewski and J. Quigg, On Exel-Pardo algebras, preprint, arXiv:1512.07302.
- R. Exel and E. Pardo, Self-similar graphs: a unified treatment of Katsura and Nekrashevych C*-algebras, to appear in Advances in Math., ArXiv:1409.1107.
- M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, preprint, ArXiv 1610.00343.

Directed graphs

• Let $E = (E^0, E^1, r, s)$ be a finite directed graph with vertex set E^0 , edge set E^1 , and range and source maps from E^1 to E^0 .

Given a graph E, the set of paths of length k is

$$E^k := \{ \mu = \mu_1 \mu_2 \cdots \mu_k : \mu_i \in E^1, s(\mu_i) = r(\mu_{i+1}) \},$$

and let

$$E^* = \bigcup_{k=0}^{\infty} E^k$$

denote the collection of finite paths. A path of length zero is defined to be a vertex.

Partial isomorphisms on graphs

- Suppose $E = (E^0, E^1, r, s)$ is a directed graph. A partial isomorphism of the path space E^* consists of two vertices $v, w \in E^0$ and a bijection $g : vE^* \to wE^*$ such that
 - $g(vE^k) = wE^k$ for all $k \in \mathbb{N}$ and
 - $g(\mu\nu) \in g(\mu)E^*$ for all $\mu\nu \in E^*$.

• For each $v \in E^0$ we let $\mathrm{id}_v : vE^* \to vE^*$ denote the partial isomorphism $\mathrm{id}_v(\mu) = \mu$ for all $\mu \in vE^*$.

• We write g for the triple (g, s(g) := v, r(g) := w), and we denote the set of all partial isomorphisms on E by $\mathcal{P}(E^*)$.

Groupoids

- A groupoid G with unit space X consists of
 - a set G and a subset $X \subseteq G$,
 - maps $r, s: G \rightarrow X$,
 - a set $G^{(2)} = G_{s} \times_{r} G := \{(g, h) \in G \times G : s(g) = r(h)\}$ together with a partially defined product $(g, h) \in G^{(2)} \mapsto gh \in G$, and
 - an inverse operation $g \in G \mapsto g^{-1} \in G$ with some properties.

Proposition

Suppose E is a directed graph. The set $\mathcal{P}(E^*)$ of partial isomorphisms on E^* is a groupoid with unit space E^0 . For $g: vE^* \to wE^*$ in $\mathcal{P}(E^*)$ we define

- r(g) = w and s(g) = v,
- if s(g) = r(h), the product $gh : s(h)E^* \rightarrow r(g)E^*$ is composition, and
- $g^{-1}: r(g)E^* \rightarrow s(g)E^*$ is the inverse of g.

Groupoid actions

Suppose that E is a directed graph and G is a groupoid with unit space E^0 .

- An action of G on the path space E^* is a (unit-preserving) groupoid homomorphism $\phi: G \to \mathcal{P}(E^*)$.
- The action is *faithful* if ϕ is one-to-one.
- If the homomorphism is fixed, we usually write $g \cdot \mu$ for $\phi_g(\mu)$.
 - This applies in particular when G arises as a subgroupoid of $\mathcal{P}(E^*)$, which is how we will define examples.

Self-similar groupoids

Definition

Suppose E is a directed graph and G is a groupoid with unit space E^0 acting faithfully on E^* . Then (G,E) is a *self-similar groupoid* if, for every $g \in G$ and $e \in s(g)E^1$, there exists $h \in G$ satisfying

$$g \cdot (e\mu) = (g \cdot e)(h \cdot \mu)$$
 for all $\mu \in s(e)E^*$. (2)

- Since the action is faithful, there is then exactly one such h∈ G, and we write g|_e := h.
- Now, for $g \in G$ and $\mu \in s(g)E^*$, the analogous definitions to the self-similar group case give us the formula:

$$g \cdot (\mu \nu) = (g \cdot \mu)(g|_{\mu} \cdot \nu)$$
 for all $\nu \in s(\mu)E^*$.

• Let E be the graph

• The path space E^* is

• Let E be the graph

ullet Define partial isomorphisms $a,b\in \mathcal{P}(E^*)$ recursively by

$$a \cdot 1\mu = 4\mu$$
 $b \cdot 3\mu = 1\mu$ (3)
 $a \cdot 2\nu = 3(b \cdot \nu)$ $b \cdot 4\mu = 2(a \cdot \mu).$

• Let G be the subgroupoid of $\mathcal{P}(E^*)$ generated by A. Then (G, E) is a self-similar groupoid.

• Let E be the graph

• Define partial isomorphisms $a,b,c,d,f,g\in\mathcal{P}(E^*)$ recursively by

$$\begin{array}{lll} a \cdot 1\mu = 1(b \cdot \mu) & b \cdot 2\nu = 2\nu & c \cdot 3\lambda = 3(a \cdot \lambda) \\ a \cdot 4\nu = 4(c \cdot \nu) & b \cdot 5\lambda = 5(d \cdot \lambda) & c \cdot 6\mu = 6(b \cdot \mu) \\ d \cdot 1\mu = 4(f \cdot \mu) & f \cdot 2\nu = 6(f^{-1} \cdot \nu) & g \cdot 3\lambda = 5\lambda \\ d \cdot 4\nu = 1(f^{-1} \cdot \nu) & f \cdot 5\lambda = 3\lambda & g \cdot 6\mu = 2(f \cdot \mu) \end{array}$$

• Let G be the subgroupoid of $\mathcal{P}(E^*)$ generated by A. Then (G, E) is a contracting self-similar groupoid

3. C^* -algebras of self-similar groupoids

- R. Exel and E. Pardo, Self-similar graphs: a unified treatment of Katsura and Nekrashevych C*-algebras, to appear in Advances in Math., ArXiv:1409.1107.
- M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, preprint, ArXiv 1610.00343.
- V. Nekrashevych, *C*-algebras and self-similar groups*, J. Reine Angew. Math. **630** (2009), 59–123.

C*-algebras of self-similar groupoids

Proposition

Let E be a finite graph without sources and (G,E) a self-similar groupoid action. There is a Toeplitz algebra $\mathcal{T}(G,E)$ defined by families $\{p_v:v\in E^0\}$, $\{s_e:e\in E^1\}$ and $\{u_g:g\in G\}$ such that

- 1. u is a unitary representation of G with $u_v = p_v$ for $v \in E^0$;
- 2. (p, s) is a Toeplitz-Cuntz-Krieger family in $\mathcal{T}(G, E)$, and $\sum_{v \in E^0} p_v$ is an identity for $\mathcal{T}(M)$;
- 3. if $g \in G$ and $e \in E^1$ with s(g) = r(e), then

$$u_g s_e = s_{g \cdot e} u_{g|_e}$$

4. if $g \in G$ and $v \in E^0$ with s(g) = v, then

$$u_g p_v = p_{g \cdot v} u_g$$
.

C*-algebras of self-similar groupoids

Proposition

Let (p, s, u) be the universal representation of the Toeplitz algebra $\mathcal{T}(G, E)$. Then

$$\mathcal{T}(\textit{G},\textit{E}) = \overline{\text{span}}\{\textit{s}_{\mu}\textit{u}_{\textit{g}}\textit{s}_{\nu}^{*}: \ \mu,\nu \in \textit{E}^{*},\textit{g} \in \textit{G} \ \textit{and} \ \textit{s}(\mu) = \textit{g} \cdot \textit{s}(\nu)\}.$$

Proposition

Let (p, s, u) be the universal representation of the Toeplitz algebra $\mathcal{T}(G, E)$. Then the Cuntz-Pimsner algebra $\mathcal{O}(G, E)$ is the quotient of $\mathcal{T}(G, E)$ by the ideal generated by

$$\Big\{p_v - \sum_{\{e \in vE^1\}} s_e s_e^*: \ v \in E^0\Big\}.$$

The gauge action

• There are natural \mathbb{R} -automorphic dynamics on $\mathcal{T}(G,E)$ and $\mathcal{O}(G,E)$ defined by

$$\sigma_t(p_v) = p_v, \quad \sigma_t(s_e) = e^{it}s_e \quad \text{ and } \quad \sigma_t(u_g) = u_g$$

• We are interested in (KMS) equilibrium states of the dynamical systems $(\mathcal{T}(G,X),\sigma)$ and of $(\mathcal{O}(G,X),\sigma)$.

4. KMS states on self-similar groupoids

- Z. Afsar, N. Brownlowe, N.S. Larsen, N. Stammeier, Equilibrium states on right LCM semigroup C*-algebras, preprint, ArXiv 1611.01052.
- M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Func. Anal. 266 (2014), 6619–6661.
- M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, preprint, ArXiv 1610.00343.

The KMS condition

• Suppose $\sigma: \mathbb{R} \to \operatorname{Aut}(A)$ is a strongly continuous action, then there is a dense *-subalgebra of σ -analytic elements: $t \mapsto \sigma_t(a)$ extends to an entire function $z \mapsto \sigma_z(a)$.

Definition

The state φ of A satisfies the KMS condition at inverse temperature $\beta \in (0,\infty)$ if

$$\varphi(ab) = \varphi(b \ \sigma_{i\beta}(a))$$

whenever a and b are analytic for σ .

Note: it suffices to verify the above for analytic elements that span a dense subalgebra, In our case, the spanning set

$$\{s_{\mu}u_{g}s_{\nu}^{*}:\ \mu,\nu\in E^{*},g\in G\ \mathrm{and}\ s(\mu)=g\cdot s(\nu)\}.$$

KMS states on the Toeplitz algebra

Theorem

Suppose E is a strongly connected finite graph with no sources. Let B be the vertex matrix of E with spectral radius $\rho(B)$.

- 1. If $\beta \in [0, \log \rho(B))$, there are no KMS $_{\beta}$ states on $(\mathcal{T}(G, E), \sigma)$;
- 2. If $\beta \in (\log \rho(B), \infty)$, there is a homeomorphism between the normalised traces on the groupoid C^* -algebra $C^*(G)$ and the KMS_{β} states on $(\mathcal{T}(G, E), \sigma)$;
- 3. If $\beta = \log \rho(B)$, the KMS $_{\log \rho(B)}$ states of $(\mathcal{T}(G, E), \sigma)$ arise from KMS states of $(\mathcal{O}(G, E), \sigma)$; and there is at least one such state.
- 4. If the set $\{g|_{\mu}: \mu \in E^*\}$ is finite for every $g \in G$, then this is the only KMS state of $(\mathcal{O}(G, E), \sigma)$.

The unique KMS state

- Suppose that E is a finite graph with no sources, that E is strongly connected, and that (G,E) is a self-similar groupoid action such that the set $\{g|_{\mu}: \mu \in E^*\}$ is finite for every $g \in G$.
- In this situation the vertex matrix B is irreducible, and has a unique unimodular Perron-Frobenius eigenvector $x \in (0,\infty)^{E^0}$.
- For $g \in G$, $v \in E^0$ and $k \ge 0$, define

$$\begin{split} F_g^k(v) &:= \{ \mu \in s(g) E^k v : g \cdot \mu = \mu \text{ and } g|_{\mu} = \mathrm{id}_v \}, \text{ and } \\ c_{g,k} &:= \rho(B)^{-k} \sum_{v \in E^0} |F_g^k(v)| x_v. \end{split}$$

• Then for each $g \in G \setminus E^0$, the sequence $\{c_{g,k} : k \in \mathbb{N}\}$ is increasing and converges with limit c_g in $[0, x_{s(g)}]$.

The unique KMS state

Theorem

In the situation from the last slide, the unique KMS_{log $\rho(B)$} state of $(\mathcal{O}(G, E), \sigma)$ is given by

$$\psi(s_{\kappa}u_{g}s_{\lambda}^{*}) = \begin{cases} \rho(B)^{-|\kappa|}c_{g} & \text{if } \kappa = \lambda \text{ and } s(g) = r(g) = s(\kappa) \\ 0 & \text{otherwise.} \end{cases}$$

ullet So we need to compute the values of c_g . This is achieved by evaluating the limit

$$c_g = \lim_{k \to \infty} \rho(B)^{-k} \sum_{v \in E^0} |F_g^k(v)| x_v$$

The Grigorchuk group

In the case of a self-similar group the graph is a bouquet of loops with a single vertex v. Thus B = [|X|] has spectral radius $\rho(B) = |X|$ with unimodular Perron-Frobenius eigenvector $x_v = 1$.

Proposition

Let (G,X) be the self-similar action of the Grigorchuk group. Then $(\mathcal{O}(G,X),\sigma)$ has a unique KMS $_{\log 2}$ state ψ which is given on generators by

$$\psi_{\log 2}(u_g) = egin{cases} 1 & \textit{for } g = e \\ 0 & \textit{for } g = a \\ 1/7 & \textit{for } g = b \\ 2/7 & \textit{for } g = c \\ 4/7 & \textit{for } g = d. \end{cases}$$

Computation of c_d for the Grigorchuk group

$$c_d = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{3n} = \frac{1}{2} \left(\frac{1}{1 - \frac{1}{8}}\right) = \frac{4}{7}.$$

Recall, (G, E) be the self-similar groupoid defined by:

$$a \cdot 1\mu = 4\mu$$
 $b \cdot 3\mu = 1\mu$ (4)
 $a \cdot 2\nu = 3(b \cdot \nu)$ $b \cdot 4\mu = 2(a \cdot \mu).$

Proposition

The Cuntz-Pimsner algebra $(\mathcal{O}(G,E),\sigma)$ has a unique KMS_{log 2} state ψ which is given on generators by

$$\psi(u_g) = \begin{cases} 0 & \text{for } g \in \{a, b, a^{-1}, b^{-1}\}, \\ 1/2 & \text{for } g \in \{v, w\}. \end{cases}$$