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Self-similar groups

Suppose X is a finite set of cardinality |X |;
let X n denote the set of words of length n in X with X 0 = ∅,

let X ∗ =
⋃
n≥0

X n.

Definition
Suppose G is a group acting faithfully on X ∗. We say (G ,X ) is a
self-similar group if, for all g ∈ G and x ∈ X , there exist h ∈ G
such that

g · (xw) = (g · x)(h · w) for all finite words w ∈ X ∗. (1)

Faithfulness of the action implies the group element h is uniquely
defined by g ∈ G and x ∈ X . So we define g |x := h and call it the
restriction of g to x .
Then (1) becomes

g · (xw) = (g · x)(g |x · w) for all finite words w ∈ X ∗.



Self-similar groups

We may replace the letter x by an initial word v ∈ X k :
For g ∈ G and v ∈ X k , define g |v ∈ G by

g |v = (g |v1)|v2 · · · |vk .

Then the self-similar relation becomes

g · (vw) = (g · v)(g |v · w) for all w ∈ X ∗.

Lemma
Suppose (G ,X ) is a self-similar group. Restrictions satisfy

g |vw = (g |v )|w , gh|v = g |h·v h|v , g |−1v = g−1|g ·v

for all g , h ∈ G and v ,w ∈ X ∗.



Example: the odometer

Suppose X = {0, 1} and AutX ∗ is the automorphism group.

Define an automorphism in AutX ∗ recursively by

a · 0w = 1w a · 1w = 0(a · w)

for every finite word w ∈ X ∗

The self-similar group generated by a is the integers
Z := {an : n ∈ Z}, and (Z,X ) is commonly called the
odometer because the self-similar action is “adding one with
carryover, in binary.”



Example: the Grigorchuk group

Suppose X = {x , y} and AutX ∗ is the automorphism group.

The Grigorchuk group is generated by four automorphisms
a, b, c , d ∈ AutX ∗ defined recursively by

a · xw = yw a · yw = xw
b · xw = x(a · w) b · yw = y(c · w)
c · xw = x(a · w) c · yw = y(d · w)
d · xw = xw d · yw = y(b · w).

Proposition

The generators a, b, c, d of G all have order two, and satisfy
cd = b = dc, db = c = bd and bc = d = cb. The self-similar
action (G ,X ) is contracting with nucleus N = {e, a, b, c , d}.



Properties of the Grigorchuk group

Theorem (Grigorchuk 1980)

The Grigorchuk group is a finitely generated infinite 2-torsion
group.

Theorem (Grigorchuk 1984)

The Grigorchuk group has intermediate growth.

(Solved a Milnor problem from 1968)



Example: the basilica group

Suppose X = {x , y} and AutX ∗ is the automorphism group.

Two automorphisms a and b in AutX ∗ are recursively defined
by

a · xw = y(b · w) a · yw = xw

b · xw = x(a · w) b · yw = yw

for w ∈ X ∗.

The basilica group B is the subgroup of AutX ∗ generated by
{a, b}. The pair (B,X ) is then a self-similar action.

The nucleus is N = {e, a, b, a−1, b−1, ba−1, ab−1}.



Properties of the basilica group

Theorem (Grigorchuk and Żuk 2003)

The basilica group

is torsion free,

has exponential growth,

has no free non-abelian subgroups,

is not elementary amenable.

Theorem (Bartholdi and Virág 2005)

The basilica group is amenable.
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Directed graphs

Let E = (E 0,E 1, r , s) be a finite directed graph with vertex
set E 0, edge set E 1, and range and source maps from E 1

to E 0.
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Given a graph E , the set of paths of length k is

E k := {µ = µ1µ2 · · ·µk : µi ∈ E 1, s(µi ) = r(µi+1)},

and let

E ∗ =
∞⋃
k=0

E k

denote the collection of finite paths. A path of length zero is
defined to be a vertex.



Partial isomorphisms on graphs

Suppose E = (E 0,E 1, r , s) is a directed graph. A partial
isomorphism of the path space E ∗ consists of two vertices
v ,w ∈ E 0 and a bijection g : vE ∗ → wE ∗ such that

g(vE k) = wE k for all k ∈ N and
g(µν) ∈ g(µ)E∗ for all µν ∈ E∗.

For each v ∈ E 0 we let idv : vE ∗ → vE ∗ denote the partial
isomorphism idv (µ) = µ for all µ ∈ vE ∗.

We write g for the triple (g , s(g) := v , r(g) := w), and we
denote the set of all partial isomorphisms on E by P(E ∗).



Groupoids

A groupoid G with unit space X consists of
a set G and a subset X ⊆ G ,
maps r , s : G → X ,
a set G (2) = G ×s r G := {(g , h) ∈ G × G : s(g) = r(h)}
together with a partially defined product
(g , h) ∈ G (2) 7→ gh ∈ G , and
an inverse operation g ∈ G 7→ g−1 ∈ G

with some properties.

Proposition

Suppose E is a directed graph. The set P(E ∗) of partial
isomorphisms on E ∗ is a groupoid with unit space E 0. For
g : vE ∗ → wE ∗ in P(E ∗) we define

r(g) = w and s(g) = v,

if s(g) = r(h), the product gh : s(h)E ∗ → r(g)E ∗ is
composition, and

g−1 : r(g)E ∗ → s(g)E ∗ is the inverse of g .



Groupoid actions

Suppose that E is a directed graph and G is a groupoid with unit
space E 0.

An action of G on the path space E ∗ is a (unit-preserving)
groupoid homomorphism φ : G → P(E ∗).

The action is faithful if φ is one-to-one.

If the homomorphism is fixed, we usually write g · µ for φg (µ).

This applies in particular when G arises as a subgroupoid of
P(E∗), which is how we will define examples.



Self-similar groupoids

Definition
Suppose E is a directed graph and G is a groupoid with unit space
E 0 acting faithfully on E ∗. Then (G ,E ) is a self-similar groupoid
if, for every g ∈ G and e ∈ s(g)E 1, there exists h ∈ G satisfying

g · (eµ) = (g · e)(h · µ) for all µ ∈ s(e)E ∗. (2)

Since the action is faithful, there is then exactly one such
h ∈ G , and we write g |e := h.

Now, for g ∈ G and µ ∈ s(g)E ∗, the analogous definitions to
the self-similar group case give us the formula:

g · (µν) = (g · µ)(g |µ · ν) for all ν ∈ s(µ)E ∗.



Example 1

Let E be the graph
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The path space E ∗ is

v

1 2

11 12 23 24

w

3 4

31 32 41 42



Example 1

Let E be the graph
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Define partial isomorphisms a, b ∈ P(E ∗) recursively by

a · 1µ = 4µ b · 3µ = 1µ (3)

a · 2ν = 3(b · ν) b · 4µ = 2(a · µ).

Let G be the subgroupoid of P(E ∗) generated by A. Then
(G ,E ) is a self-similar groupoid.



Example 2
Let E be the graph
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Define partial isomorphisms a, b, c, d , f , g ∈ P(E ∗) recursively
by

a · 1µ = 1(b · µ) b · 2ν = 2ν c · 3λ = 3(a · λ)
a · 4ν = 4(c · ν) b · 5λ = 5(d · λ) c · 6µ = 6(b · µ)
d · 1µ = 4(f · µ) f · 2ν = 6(f −1 · ν) g · 3λ = 5λ
d · 4ν = 1(f −1 · ν) f · 5λ = 3λ g · 6µ = 2(f · µ)

Let G be the subgroupoid of P(E ∗) generated by A. Then
(G ,E ) is a contracting self-similar groupoid



3. C ∗-algebras of self-similar groupoids
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C ∗-algebras of self-similar groupoids

Proposition

Let E be a finite graph without sources and (G ,E ) a self-similar
groupoid action. There is a Toeplitz algebra T (G ,E ) defined by
families {pv : v ∈ E 0}, {se : e ∈ E 1} and {ug : g ∈ G} such that

1. u is a unitary representation of G with uv = pv for v ∈ E 0;

2. (p, s) is a Toeplitz-Cuntz-Krieger family in T (G ,E ), and∑
v∈E0 pv is an identity for T (M);

3. if g ∈ G and e ∈ E 1 with s(g) = r(e), then

ug se = sg ·eug |e

4. if g ∈ G and v ∈ E 0 with s(g) = v, then

ugpv = pg ·vug .



C ∗-algebras of self-similar groupoids

Proposition

Let (p, s, u) be the universal representation of the Toeplitz algebra
T (G ,E ). Then

T (G ,E ) = span{sµug s∗ν : µ, ν ∈ E ∗, g ∈ G and s(µ) = g · s(ν)}.

Proposition

Let (p, s, u) be the universal representation of the Toeplitz algebra
T (G ,E ). Then the Cuntz-Pimsner algebra O(G ,E ) is the quotient
of T (G ,E ) by the ideal generated by{

pv −
∑
{e∈vE1}

ses
∗
e : v ∈ E 0

}
.



The gauge action

There are natural R-automorphic dynamics on T (G ,E ) and
O(G ,E ) defined by

σt(pv ) = pv , σt(se) = e itse and σt(ug ) = ug

We are interested in (KMS) equilibrium states of the
dynamical systems (T (G ,X ), σ) and of (O(G ,X ), σ).



4. KMS states on self-similar groupoids
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The KMS condition

Suppose σ : R→ Aut(A) is a strongly continuous action, then
there is a dense *-subalgebra of σ-analytic elements:
t 7→ σt(a) extends to an entire function z 7→ σz(a).

Definition
The state ϕ of A satisfies the KMS condition at inverse
temperature β ∈ (0,∞) if

ϕ(ab) = ϕ(b σiβ(a))

whenever a and b are analytic for σ.

Note: it suffices to verify the above for analytic elements that
span a dense subalgebra, In our case, the spanning set

{sµug s∗ν : µ, ν ∈ E ∗, g ∈ G and s(µ) = g · s(ν)}.



KMS states on the Toeplitz algebra

Theorem
Suppose E is a strongly connected finite graph with no sources.
Let B be the vertex matrix of E with spectral radius ρ(B).

1. If β ∈ [0, log ρ(B)), there are no KMSβ states on
(T (G ,E ), σ);

2. If β ∈ (log ρ(B),∞), there is a homeomorphism between the
normalised traces on the groupoid C ∗-algebra C ∗(G ) and the
KMSβ states on (T (G ,E ), σ);

3. If β = log ρ(B), the KMSlog ρ(B) states of (T (G ,E ), σ) arise
from KMS states of (O(G ,E ), σ); and there is at least one
such state.

4. If the set {g |µ : µ ∈ E ∗} is finite for every g ∈ G, then this is
the only KMS state of (O(G ,E ), σ).



The unique KMS state

Suppose that E is a finite graph with no sources, that E is
strongly connected, and that (G ,E ) is a self-similar groupoid
action such that the set {g |µ : µ ∈ E ∗} is finite for every
g ∈ G .

In this situation the vertex matrix B is irreducible, and has a
unique unimodular Perron-Frobenius eigenvector
x ∈ (0,∞)E

0
.

For g ∈ G , v ∈ E 0 and k ≥ 0, define

F k
g (v) := {µ ∈ s(g)E kv : g · µ = µ and g |µ = idv}, and

cg ,k := ρ(B)−k
∑
v∈E0

|F k
g (v)|xv .

Then for each g ∈ G \ E 0, the sequence {cg ,k : k ∈ N} is
increasing and converges with limit cg in [0, xs(g)].



The unique KMS state

Theorem
In the situation from the last slide, the unique KMSlog ρ(B) state of
(O(G ,E ), σ) is given by

ψ(sκug s
∗
λ) =

{
ρ(B)−|κ|cg if κ = λ and s(g) = r(g) = s(κ)

0 otherwise.

So we need to compute the values of cg . This is achieved by
evaluating the limit

cg = lim
k→∞

ρ(B)−k
∑
v∈E0

|F k
g (v)|xv



The Grigorchuk group

In the case of a self-similar group the graph is a bouquet of loops
with a single vertex v . Thus B = [|X |] has spectral radius
ρ(B) = |X | with unimodular Perron-Frobenius eigenvector xv = 1.

Proposition

Let (G ,X ) be the self-similar action of the Grigorchuk group.
Then (O(G ,X ), σ) has a unique KMSlog 2 state ψ which is given
on generators by

ψlog 2(ug ) =



1 for g = e

0 for g = a

1/7 for g = b

2/7 for g = c

4/7 for g = d .



Computation of cd for the Grigorchuk group

d

e b

a c

a d

e b
...

2−1

2−4

2−7

cd =
1

2

∞∑
n=0

(1

2

)3n
=

1

2

( 1

1− 1
8

)
=

4

7
.



Example 1
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Recall, (G ,E ) be the self-similar groupoid defined by:

a · 1µ = 4µ b · 3µ = 1µ (4)

a · 2ν = 3(b · ν) b · 4µ = 2(a · µ).

Proposition

The Cuntz-Pimsner algebra (O(G ,E ), σ) has a unique KMSlog 2

state ψ which is given on generators by

ψ(ug ) =

{
0 for g ∈ {a, b, a−1, b−1},
1/2 for g ∈ {v ,w}.


