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1. Self-similar groups
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@ R. Grigorchuk, Milnor Problem on group growth and theory of
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Self-similar groups
@ Suppose X is a finite set of cardinality | X]|;
o let X" denote the set of words of length n in X with X0 =g,
o let X* = [ JXx".
n>0

Definition

Suppose G is a group acting faithfully on X*. We say (G, X) is a
self-similar group if, for all g € G and x € X, there exist h€ G
such that

g (xw)=(g-x)(h-w) for all finite words w € X*. (1)

Faithfulness of the action implies the group element h is uniquely
defined by g € G and x € X. So we define g|x := h and call it the
restriction of g to x.

Then (1) becomes

g (xw) = (g-x)(glx-w) for all finite words w € X*.



Self-similar groups

We may replace the letter x by an initial word v € Xk:
For g € G and v € XX, define g|, € G by

glv = (&lv)lva - v
Then the self-similar relation becomes

g (w)=(g-v)(gl -w) forallwe X"

Lemma
Suppose (G, X) is a self-similar group. Restrictions satisfy

glw = (&l )lw: ghlv =glnv hlv, glt =g tlgv

for allg,h € G and v,w € X*.



Example: the odometer

@ Suppose X ={0,1} and Aut X* is the automorphism group.

@ Define an automorphism in Aut X* recursively by
a-0w=1w a-lw=0(a-w)

for every finite word w € X*

@ The self-similar group generated by a is the integers
Z:={a": neZ}, and (Z,X) is commonly called the
odometer because the self-similar action is “adding one with
carryover, in binary.”



Example: the Grigorchuk group

@ Suppose X = {x,y} and Aut X* is the automorphism group.

@ The Grigorchuk group is generated by four automorphisms
a, b, c,d € Aut X* defined recursively by

a-xw =yw a-yw = xw
b-xw=x(a-w) b-yw=y(c-w)
c-xw=x(a-w) c-yw=y(d w)
d-xw = xw d-yw=y(b-w).
Proposition

The generators a, b, ¢, d of G all have order two, and satisfy
cd =b=dc, db=c = bd and bc = d = cb. The self-similar
action (G, X) is contracting with nucleus N = {e,a, b, c,d}.



Properties of the Grigorchuk group

Theorem (Grigorchuk 1980)

The Grigorchuk group is a finitely generated infinite 2-torsion
group.

Theorem (Grigorchuk 1984)
The Grigorchuk group has intermediate growth.
(Solved a Milnor problem from 1968)



Example: the basilica group

@ Suppose X = {x, y} and Aut X* is the automorphism group.

@ Two automorphisms a and b in Aut X* are recursively defined
by

a-xw=y(b-w) a-yw = xw

b-xw=x(a-w) b-yw=yw

for w € X*.

@ The basilica group B is the subgroup of Aut X* generated by
{a, b}. The pair (B, X) is then a self-similar action.
e The nucleus is V' = {e,a,b,a~, b7, bat ab~1}.



Properties of the basilica group

Theorem (Grigorchuk and Zuk 2003)
The basilica group

@ is torsion free,

@ has exponential growth,

@ has no free non-abelian subgroups,

@ is not elementary amenable.

Theorem (Bartholdi and Virdg 2005)
The basilica group is amenable.



2. Self-similar groupoids

@ E. Bédos, S. Kaliszewski and J. Quigg, On Exel-Pardo algebras,
preprint, arXiv:1512.07302.

@ R. Exel and E. Pardo, Self-similar graphs: a unified treatment of
Katsura and Nekrashevych C*-algebras, to appear in Advances in
Math., ArXiv:1409.1107.

@ M. Laca, |. Raeburn, J. Ramagge, and M. Whittaker Equilibrium
states on operator algebras associated to self-similar actions of
groupoids on graphs, preprint, ArXiv 1610.00343.



Directed graphs

o Let E = (E° E', r,s) be a finite directed graph with vertex
set EO, edge set El and range and source maps from El
to EV.
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@ Given a graph E, the set of paths of length k is
EX = {p=papo-pr: pi € EY s(ui) = r(piza)},
and let

E* — G Ek
k=0

denote the collection of finite paths. A path of length zero is
defined to be a vertex.



Partial isomorphisms on graphs

o Suppose E = (E® E%, r,s) is a directed graph. A partial
isomorphism of the path space E* consists of two vertices
v,w € EY and a bijection g : vE* — wE* such that

o g(vEX) = wEX for all k € N and
o g(uv) € g(u)E* for all pv € E*.

@ For each v € E9 we let id, : vE* — vE* denote the partial
isomorphism id, (u) = u for all u € vE*.

e We write g for the triple (g,s(g) := v, r(g) := w), and we
denote the set of all partial isomorphisms on E by P(E™).



Groupoids

@ A groupoid G with unit space X consists of

e aset G and a subset X C G,

e maps r,s: G — X,

o aset GW =G x,G:={(g,h)cGxG: s(g)=r(h)}
together with a partially defined product
(g,h) € G® s ghe G, and

e an inverse operation g € G gt € G

with some properties.

Proposition
Suppose E is a directed graph. The set P(E*) of partial
isomorphisms on E* is a groupoid with unit space E°. For
g : vE* — wE* in P(E*) we define
o r(g) =wands(g)=v,
o ifs(g) = r(h), the product gh : s(h)E* — r(g)E* is
composition, and

o g l:r(g)E* — s(g)E* is the inverse of g.



Groupoid actions

Suppose that E is a directed graph and G is a groupoid with unit
space EC,

@ An action of G on the path space E* is a (unit-preserving)
groupoid homomorphism ¢ : G — P(E™).

@ The action is faithful if ¢ is one-to-one.

o If the homomorphism is fixed, we usually write g - 11 for ¢z (u).

e This applies in particular when G arises as a subgroupoid of
P(E*), which is how we will define examples.



Self-similar groupoids

Definition

Suppose E is a directed graph and G is a groupoid with unit space
E° acting faithfully on E*. Then (G, E) is a self-similar groupoid
if, for every g € G and e € s(g)E?, there exists h € G satisfying

g-(ep)=(g-e)(h-p)  forall pes(e)E" (2)

@ Since the action is faithful, there is then exactly one such
h € G, and we write g|. := h.

@ Now, for g € G and p € s(g)E™, the analogous definitions to
the self-similar group case give us the formula:

g - (w)= (g p)gly-v) forallves(u)E”



Example 1
@ Let E be the graph

@ The path space E* is
v
/N
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Example 1

@ Let E be the graph

@ Define partial isomorphisms a, b € P(E*) recursively by
a-1lp=4u b-3u=1u (3)
a-2v=3(b-v) b-4u=2(a-p).

@ Let G be the subgroupoid of P(E*) generated by A. Then
(G, E) is a self-similar groupoid.



Example 2
@ Let E be the graph

@ Define partial isomorphisms a, b, ¢, d, f,g € P(E™) recursively

by

a-lu=1(b-p) b-2v=2v c-3x=3(a- )
a-4v=4(c-v) b-5Xx=5(d-\) c-6u==6(b-p)
d-1p=4(f ) f-2v="06(f1-v) g -3\ =5\
d-4v=1(f1-v) f-5A =3\ g-6u=2(f p

@ Let G be the subgroupoid of P(E*) generated by A. Then
(G, E) is a contracting self-similar groupoid



3. C*-algebras of self-similar groupoids

@ R. Exel and E. Pardo, Self-similar graphs: a unified treatment of
Katsura and Nekrashevych C*-algebras, to appear in Advances in
Math., ArXiv:1409.1107.

@ M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium
states on operator algebras associated to self-similar actions of
groupoids on graphs, preprint, ArXiv 1610.00343.

@ V. Nekrashevych, C*-algebras and self-similar groups, J. Reine
Angew. Math. 630 (2009), 59-123.



C*-algebras of self-similar groupoids

Proposition

Let E be a finite graph without sources and (G, E) a self-similar

groupoid action. There is a Toeplitz algebra T (G, E) defined by

families {p, : v € E°}, {se : e € E'} and {u, : g € G} such that

1. u is a unitary representation of G with u, = p, forv € EO;

2. (p,s) is a Toeplitz-Cuntz-Krieger family in T (G, E), and
> veEo Pv is an identity for T(M);

3. ifg € G and e € E! with s(g) = r(e), then

UgSe = Sg.e ug‘e

4. ifg € G and v € E® with s(g) = v, then

UgPy = Pg.vlg.



C*-algebras of self-similar groupoids

Proposition
Let (p,s, u) be the universal representation of the Toeplitz algebra
T(G,E). Then

T(G,E) =5span{s,ugs, : u,v € E*, g€ G and s(u) = g - s(v)}.

Proposition

Let (p, s, u) be the universal representation of the Toeplitz algebra
T(G,E). Then the Cuntz-Pimsner algebra O(G, E) is the quotient
of T(G, E) by the ideal generated by

{pv— Z SeS, VEEO}.

{eevEl}



The gauge action

@ There are natural R-automorphic dynamics on 7(G, E) and
O(G, E) defined by

oi(pv) = pv, 0clse) = eitse and Ut(ug) = Ug

e We are interested in (KMS) equilibrium states of the
dynamical systems (7 (G, X),0) and of (O(G, X),0).



4. KMS states on self-similar groupoids

@ Z. Afsar, N. Brownlowe, N.S. Larsen, N. Stammeier, Equilibrium
states on right LCM semigroup C*-algebras, preprint, ArXiv
1611.01052.

@ M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium
states on the Cuntz-Pimsner algebras
of self-similar actions, J. Func. Anal. 266 (2014), 6619-6661.

@ M. Laca, I. Raeburn, J. Ramagge, and M. Whittaker Equilibrium
states on operator algebras associated to self-similar actions of
groupoids on graphs, preprint, ArXiv 1610.00343.



The KMS condition

@ Suppose o : R — Aut(A) is a strongly continuous action, then
there is a dense *-subalgebra of o-analytic elements:
t — o¢(a) extends to an entire function z — o0(a).

@ Definition
The state ¢ of A satisfies the KMS condition at inverse

temperature 8 € (0, 00) if
p(ab) = p(b oig(a))
whenever a and b are analytic for o.

Note: it suffices to verify the above for analytic elements that
span a dense subalgebra, In our case, the spanning set

{suugs, : p,v € E*, g € G and s(u) = g - s(v)}.



KMS states on the Toeplitz algebra

Theorem
Suppose E is a strongly connected finite graph with no sources.
Let B be the vertex matrix of E with spectral radius p(B).

1. If g € ]0,log p(B)), there are no KMSg states on
(T(G, E),0);

2. If B € (log p(B),0), there is a homeomorphism between the
normalised traces on the groupoid C*-algebra C*(G) and the
KMSg states on (T (G, E),o),

3. If 3 =log p(B), the KMSiog () States of (T(G, E), o) arise
from KMS states of (O(G, E), o), and there is at least one
such state.

4. If the set {g|, : pn € E*} is finite for every g € G, then this is
the only KMS state of (O(G, E), o).



The unique KMS state

@ Suppose that E is a finite graph with no sources, that E is
strongly connected, and that (G, E) is a self-similar groupoid
action such that the set {g|, : © € E*} is finite for every
g€ G.

@ In this situation the vertex matrix B is irreducible, and has a
unique unimodular Perron-Frobenius eigenvector
0
x € (0,00)E".

e For g € G, v € E% and k > 0, define

ng(v) ={pes(g)Ev:g-p=pandgl|, =id,}, and
Cgk = p(B) Y IFE(V)Ix.

vEED

@ Then for each g € G\ E?, the sequence {cg« : k € N} is
increasing and converges with limit ¢g in [0, xy(g)]-



The unique KMS state

Theorem
In the situation from the last slide, the unique KMSog 5y State of
(O(G,E), o) is given by

p(B) Fley ifk =\ and s(g) = r(g) = s(k)

0 otherwise.

h(srtgsy) = {

@ So we need to compute the values of ¢c,. This is achieved by
evaluating the limit

s = lim p(B)* 3" IFEW) b
vEED



The Grigorchuk group

In the case of a self-similar group the graph is a bouquet of loops
with a single vertex v. Thus B = [|X]] has spectral radius
p(B) = | X| with unimodular Perron-Frobenius eigenvector x, = 1.

Proposition

Let (G, X) be the self-similar action of the Grigorchuk group.
Then (O(G, X), o) has a unique KMSiog 2 state 1 which is given
on generators by

1 forg =e

0 forg = a
Yrog2(Ug) =< 1/7 forg=0>b
2/7 forg=c

4/7 forg=d.



Computation of ¢4 for the Grigorchuk group
/ d \
e b
o1 I / \
a C
a d




Example 1

4

Cvfgx\w
N

2
Recall, (G, E) be the self-similar groupoid defined by:

a-lp=4u b-3u=1p (4)
a-2v=3(b-v) b-4p=2(a-p).
Proposition

The Cuntz-Pimsner algebra (O(G, E), o) has a unique KMSiog 2
state i which is given on generators by

0 forg € {a,b,a=t b71},
U(ug) =
1/2  forg e {v,w}.



