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DNA sequence differences 
are determinants of meiotic 
recombination outcome
Simon D. Brown1,3,4, Samantha J. Mpaulo1,4, Mimi N. Asogwa1, Marie Jézéquel1, 
Matthew C. Whitby   2 & Alexander Lorenz   1*

Meiotic recombination is essential for producing healthy gametes, and also generates genetic 
diversity. DNA double-strand break (DSB) formation is the initiating step of meiotic recombination, 
producing, among other outcomes, crossovers between homologous chromosomes (homologs), which 
provide physical links to guide accurate chromosome segregation. The parameters influencing DSB 
position and repair are thus crucial determinants of reproductive success and genetic diversity. Using 
Schizosaccharomyces pombe, we show that the distance between sequence polymorphisms across 
homologs has a strong impact on meiotic recombination rate. The closer the sequence polymorphisms 
are to each other across the homologs the fewer recombination events were observed. In the 
immediate vicinity of DSBs, sequence polymorphisms affect the frequency of intragenic recombination 
events (gene conversions). Additionally, and unexpectedly, the crossover rate of flanking markers tens 
of kilobases away from the sequence polymorphisms was affected by their relative position to each 
other amongst the progeny having undergone intragenic recombination. A major regulator of this 
distance-dependent effect is the MutSα-MutLα complex consisting of Msh2, Msh6, Mlh1, and Pms1. 
Additionally, the DNA helicases Rqh1 and Fml1 shape recombination frequency, although the effects 
seen here are largely independent of the relative position of the sequence polymorphisms.

Correct chromosome segregation during meiosis depends on pairing and physical connection of homologous 
chromosomes (homologs). Physical connections are established by the repair of programmed DNA double-strand 
breaks (DSBs) using the homolog rather than the sister chromatid as a template (i.e. interhomolog recombination) 
and by ensuring that interhomolog recombination intermediates are processed into crossovers (COs). The forma-
tion of DSBs by the transesterase Spo11 is thus a key step in initiating recombination during meiosis1. Regions of 
high-frequency Spo11 recruitment, and thus DSB formation, are called hotspots2. One of the best characterized 
category of hotspots are cAMP-responsive elements in Schizosaccharomyces pombe, created by point mutations 
in the ade6 gene that represent binding sites for the Atf1-Pcr1 transcription factor2,3. These include the ade6-M26 
hotspot and its derivatives, which are defined by the DNA sequence heptamer 5′-ATGACGT-3′3. Although bind-
ing of Atf1-Pcr1 and the associated transcription already creates open chromatin at M26-like hotspots3,4, a very 
high frequency of meiotic recombination requires a conducive chromatin environment in a wider genomic con-
text5,6. This network of parameters determines the overall level of DSB formation at a given genomic locus.

Following break formation, DSB ends are resected to initiate homologous recombination, which during meio-
sis follows either a Holliday junction/D-loop resolution or a synthesis-dependent strand annealing (SDSA) path-
way1,7. As a repair template, either the sister chromatid or the homolog can be used8. Based on this, it has been 
suggested that the governance of meiotic recombination could be viewed as a two-tiered decision system9. The 
first decision being template choice (interhomolog vs. intersister recombination), and the second being how the 
recombination intermediate is resolved - i.e. the CO/non-crossover (NCO) decision. The template choice deci-
sion is mainly driven by meiosis-specific factors of the chromosome axis and by the meiotic recombinase Dmc1 
supported by its mediators8. In budding yeast there is a basic understanding of how the interhomolog bias is 
established, although some mechanistic details still remain to be elucidated10. Since homologs are not necessarily 
identical on a DNA sequence level, a DSB end invading the homolog for repair can generate mismatch-containing 
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heteroduplex DNA. Mismatches can be corrected by the mismatch repair system, consisting of the highly con-
served MutS and MutL proteins11. Additionally, the MutS-MutL complex can also block strand invasion to avoid 
recombination between non-homologous sequences11. The CO/NCO-decision happens as the next step; here 
the decision is taken whether an already established interhomolog recombination intermediate is processed into 
a CO or a NCO. Determinants of the CO/NCO-decision are less well studied, but the DNA helicase/translo-
case FANCM (Fml1 in Sz. pombe) has been shown to limit CO formation in fission yeast and Arabidopsis12,13. 
RecQ-type DNA helicases perform a wide range of regulatory roles in homologous recombination, and one of 
which probably is the promotion of NCO formation during meiosis in various organisms14–18.

Here, we employ a series of meiotic recombination assays featuring intragenic markers at differently sized 
intragenic intervals and flanking intergenic markers to identify and characterize intrinsic determinants of tem-
plate choice and CO/NCO-decision in fission yeast. We show that the relative positions of DNA sequence poly-
morphisms between homologs have a strong impact on recombination outcome, not only locally in the form of 
intragenic recombination (gene conversion), but also on the CO frequency between an up- and a downstream 
marker. The anti-recombinogenic activity of MutSα-MutLα factors, and of the DNA helicases Fml1 and Rqh1 
modulate recombination outcome differentially when comparing various intragenic intervals.

Results and Discussion
Rationale of the meiotic recombination assay.  Our meiotic recombination assay features intragenic 
markers (point mutations in the ade6 gene) and flanking intergenic markers (ura4+-aim2 and his3+-aim) (Fig. 1). 
This assay allows us to monitor various recombination outcomes: (I) intragenic recombination (gene conversion) 
events producing Ade+ recombinants, (II) crossovers (COs) between the flanking intergenic markers (ura4+-
aim2 and his3+-aim), and (III) the ratio of COs vs. non-crossovers (NCOs) among intragenic ade6+ recombi-
nation events (Fig. 1A). Changes in gene conversion and overall CO frequencies observed in this assay can be 
explained by an altered frequency of DSB formation at a given ade6 mutant allele, or a change in repair template 
usage. The percentages of COs and NCOs among intragenic ade6+ recombination events are the genetic readout 
for the CO/NCO-decision, representing recombination intermediate processing after successful strand exchange 
between homologs. The intragenic events are most likely the result of gene conversions associated with COs or 
NCOs (non-reciprocal exchange of hereditary information).

The physical distance between point mutations of heteroalleles defines the frequency of intra-
genic recombination events and their associated CO/NCO ratio.  Apart from absolute DSB levels, 
intragenic recombination frequency is also influenced by the distance between point mutations in a given chro-
mosomal region5,19–21. Intragenic recombination in our assays (Fig. 1A) has so far been monitored using point 
mutations within the ade6 coding sequence, which are at least 1 kb apart12,22,23. We wondered whether the level 
of COs among intragenic recombination events also changes, when the distance between point mutations was 
decreased. Therefore, we selected a series of point mutations, which cover almost the complete length of the ade6 
coding sequence (Fig. 1B, Supplementary Table S1). These point mutants include the strong meiotic recombi-
nation hotspots ade6-M26, -3074, -3083, at the 5′ end of the gene and -3049 at the 3′ prime end of the gene, and 
the non-hotspot alleles ade6-M216, -M375, -704, -52, -149, -51, and -469 (Fig. 1B, Supplementary Table S1). All 
hotspots used here mimic a cAMP-response element, which creates a binding site for the Atf1-Pcr1 transcription 
factor; this in turn generates open chromatin3,5. It can be safely assumed that a given hotspot will receive the same 
amount of breakage independent of the ade6 allele present on the homolog. This means that the differences seen 
in the combinations of one specific hotspot with various ade6 alleles will depend on processes downstream of 
DSB formation. Indeed, the frequency of intragenic recombination positively correlates with the distance between 
the ade6 alleles, when the same hotspot is used (Fig. 2A, black and grey lines). Recombination at the ade6-M375 
allele, which is at a similar position as the strong hotspot alleles ade6-3074 & ade6-3083, is induced at an over-
all much lower level (Fig. 2A, green line), but appears to be the acceptor of genetic information when crossed 
to ade6-469 (Fig. 2E), indicating that ade6-M375 is somewhat more recombinogenic than ade6-469. Intragenic 
recombination frequency at ade6-M375 shows a similar correlation with respect to distance between the DNA 
polymorphisms as crosses involving hotspots (Fig. 2A). Intragenic intervals of similar size containing the meiotic 
recombination hotspot alleles, ade6-3083, ade6-3074, or ade6-3049, and a non-hotspot allele produce equivalent 
intragenic recombination levels (Fig. 2A). Therefore, these hotspot alleles behave similarly in determining intra-
genic recombination frequency.

Intriguingly, these observations are also largely true for CO frequency among intragenic recombination 
events: The shorter an intragenic distance between polymorphisms is, the more likely an intragenic recombina-
tion event is resolved as a NCO (Fig. 2B). For crosses involving the hotspot alleles ade6-3083 or ade6-3074 the 
effect apparently tails off at intragenic distances >600 bp (Fig. 2B). Combining hotspot alleles on both homologs 
within a cross results in increased overall intragenic recombination rate compared with a hotspot × non-hotspot 
cross covering a similar intragenic distance between point mutations (Fig. 2C), in line with previous reports24. 
However, there is no notable difference in COs among intragenic recombination events (Fig. 2D). This indicates 
that the frequency of CO among intragenic recombination events is primarily a function of the distance between 
the ade6 heteroalleles on the homologs.

The distribution of different NCO/CO classes amongst intragenic recombination events follows a pattern con-
sistent with intragenic NCOs more likely being associated with the hotter allele. This means that the allele more 
likely to receive a DSB is the recipient of genetic information in the overwhelming majority of cases, which might 
represent a bona fide gene conversion event, e.g. the vast majority of Ade+ NCO events in the ade6-3083 × ade6-
469 cross are Ura+ His−, because the ade6-3083 allele is linked to the ura4+-aim2 marker (Fig. 2E). If comparable 
hotspots are combined in a cross the two intragenic NCO classes occur with roughly equal frequency (Fig. 2E, 
compare cross ade6-3083 × ade6-3049 to crosses ade6-3083 × ade6-469 & ade6-M375 × ade6-3049).
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The observed distribution patterns also suggest that, at these long intragenic intervals, a subset of CO events 
could stem from the processing of one joint molecule, presumably a single Holliday junction25 or its precursors, 
positioned between the two ade6 point mutations; in contrast to a gene conversion event being resolved as a CO. 
This idea makes the following prediction: If CO events among Ade+ recombinants (mostly Ura− His− genotypes) 
are created by processing of a joint molecule situated between the two ade6 point mutations, then reciprocal Ura+ 
Ade− His+ recombinants carrying the mutations of both ade6 heteroalleles must exist. To test this, we sequenced 
the ade6 locus from 32 Ura+ Ade− His+ colonies from an ade6-3083 × ade6-469 cross. Based on the frequency 
of 0.677% Ura− Ade+ His− events among the total viable progeny in such a cross representing 8.375% of recom-
binants among all Ura− His− colonies (240 Ura− His− colonies among 2,969 total viable progeny, 8.083%), we 
would expect that 2-3 of the 32 Ura+ Ade− His+ carry both the 3083 and the 469 mutation within the ade6 locus, 
if all these events were generated by CO processing of a recombination internediate between the two heteroalleles. 
We did not observe any instances in which the ade6 locus of Ura+ Ade− His+ progeny harbored both mutations 
(Supplementary Fig. S1). Intragenic COs, if arising at all, are thus potentially only a minor cause in such progeny  
among gene conversions, which are already relatively rare events. Rather, it is simple gene conversions at sin-
gle loci, which are primarily generated by mismatch repair or DNA synthesis during DSB repair26, that are 
responsible.

Figure 1.  Meiotic recombination assay composed of ade6 heteroalleles flanked by artificially introduced 
markers ura4+-aim2 & his3+-aim. (A) Schematic showing the meiotic recombination assay at ade6 (yellow) 
and its common outcomes. Ade+ recombinants can arise via gene conversion (GC) associated with a crossover 
(GC-CO) or a non-crossover (GC-NCO). The positions of ade6, and the artificially introduced markers ura4+-
aim2 (green) and his3+-aim (light blue) on chromosome 3 are indicated [in bps]. Positions of point mutations 
are shown as ▼ and ×. (B) Schematic of the ade6 coding sequence indicating the point mutations and their 
positions (approximately to scale) used in the recombination assays, hotspots are indicated in red, and non-
hotspots in light blue. The distance between the sequence polymorphisms across the homologs is indicated in 
relation to the given hotspot of each cross [in bp].
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MutSα and MutLα are strong negative modulators of recombination frequency specifically 
at short intragenic intervals.  Potential candidates for genetic pathways modulating recombination fre-
quency at intragenic intervals of different lengths are MutS-MutL complexes, which bind to heteroduplex DNA 
and repair mismatches11. Sz. pombe has a streamlined nuclear mismatch repair system consisting of MutSα 
(Msh2-Msh6), MutSβ (Msh2-Msh3), and a single MutL (MutLα, Mlh1-Pms1); there is also a mitochondrial MutS 
protein called Msh127. Importantly, the meiotic pro-crossover factors MutSγ (Msh4-Msh5), the meiosis-specific 

Figure 2.  Physical distance between heteroalleles in ade6 influences frequency of gene conversion (GC) 
and associated crossovers (COs). (A) Frequency of GC and (B) frequency of CO among GC events at ade6 
in wild type over distance between point mutations: crosses involving hotspot ade6-3083 as black solid line, 
UoA110 × UoA100 (ade6-3083 × ade6-M216) (n = 12), ALP733 × UoA115 (ade6-3083 × ade6-704) (n = 12), 
ALP733 × UoA119 (ade6-3083 × ade6-52) (n = 5), ALP733 × ALP731 (ade6-3083 × ade6-469) (n = 20); 
crosses involving hotspot ade6-3074 as black dashed line, UoA106 × UoA100 (ade6-3074 × ade6-M216) 
(n = 12), UoA104 × UoA115 (ade6-3074 × ade6-704) (n = 12), UoA104 × UoA119 (ade6-3074 × ade6-52) 
(n = 6), UoA104 × ALP731 (ade6-3074 × ade6-469) (n = 10); crosses involving hotspot ade6-3049 as grey 
line, UoA122 × UoA497 (ade6-3049 × ade6-149) (n = 6), UoA120 × UoA463 (ade6-3049 × ade6-51) (n = 6), 
UoA120 × ALP731 (ade6-3049 × ade6-469) (n = 31), UoA116 × UoA123 (ade6-3049 × ade6-52) (n = 12), 
UoA112 × UoA123 (ade6-3049 × ade6-704) (n = 12), ALP1541 × UoA123 (ade6-3049 × ade6-M375) (n = 12), 
UoA99 × UoA123 (ade6-3049 × ade6-M216) (n = 12); and crosses involving non-hotspot ade6-M375 as green 
line – needs to be read from the green secondary y-axis in (A), UoA861 × UoA100 (ade6-M375 × ade6-M216) 
(n = 6), ALP1541 × UoA119 (ade6-M375 × ade6-52) (n = 6), ALP1541 × ALP731 (ade6-M375 × ade6-469) 
(n = 16). (C) Frequency of GC and (D) frequency of CO among GC events at ade6 in wild type crosses 
involving hotspot alleles only: FO1285 × UoA123 (ade6-M26 × ade6-3049) (n = 12), UoA104 × UoA123 (ade6-
3074 × ade6-3049) (n = 9), and ALP733 × UoA123 (ade6-3083 × ade6-3049) (n = 9); the hotspot × non-hotspot 
cross UoA99 × UoA123 (ade6-3049 × ade6-M216) (n = 12) is shown for comparison. (E) Distribution of non-
crossover (NCO; Ura+ His− & Ura− His+) and crossover (CO; Ura+ His+ & Ura− His−) classes among Ade+ GC 
events in wild type (percentages in each class are shown as means ± Std. Dev.); ALP1541 × ALP731 (n = 16), 
ALP733 × ALP731 (n = 20), ALP1541 × UoA123 (n = 12), ALP733 × UoA123 (n = 9). n indicates the number 
of independent crosses. For details of data see Supplementary Table S2.
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MutLγ component Mlh3, and Mlh2 – a MutLβ-homolog and a modulator of meiotic gene conversion tract 
length – are all missing in fission yeast28,29. This suggests that Sz. pombe is a suitable model to study the role of 
MutSα/β-MutLα during meiosis without potential crosstalk from MutSγ-MutLγ pro-crossover factors30.

At small intragenic intervals the absence of MutSα and/or MutLα causes a substantial increase in intragenic 
recombination frequency (Fig. 3A, Supplementary Fig. S2). This relationship shows an inverse correlation, i.e. 
the shorter the intragenic interval the higher the increase. This ranges from a ~70-fold increase at the ade6-
149 × ade6-3049 (33 bp) interval, via a ~35-fold one at ade6-3049 × ade6-51 (53 bp), to a ~10-fold augmentation 
at the ade6-M216 × ade6-3083 (84 bp) interval (Fig. 3A, Supplementary Fig. S2). The mutSα mutants (msh2-30, 
msh6Δ) and the mutLα mutants (mlh1Δ, pms1-16) displayed similar frequencies of intragenic recombination 
to each other, and the msh2-30 mlh1Δ double mutant is not discernible from either single mutant (Fig. 3A), 
indicating that MutSα and MutLα work in the same pathway. Deleting mutSβ (msh3) is of no consequence at 
the ade6-M216 × ade6-3083 interval (Fig. 3A; p = 0.613 against wild type, two-tailed Mann-Whitney U), likely 
because all the ade6 mutations tested are substitution mutations, and MutSβ only recognizes insertion/deletion 
loop mismatches larger than 2 nucleotides11. At larger intragenic intervals, there seems to be little or no role for 
MutSα-MutLα in limiting recombination events. A moderate, but mostly non-significant, tendency of lower 
intragenic recombination frequency can be observed (Fig. 3B, Supplementary Fig. S2). Altogether, these data 
show that MutSα-MutLα has a strong anti-recombinogenic role at small intragenic intervals, but seemingly no 
substantial role in determining recombination outcome at large intragenic intervals.

Mutating mutSα-mutLα genes increases CO frequency among gene conversion events (Fig.  3C,D, 
Supplementary Fig. S3) and/or changes the distribution of recombinant classes (Supplementary Fig. S4). Both 
long and short intragenic intervals involving the ade6-3083 allele showed increases in associated CO frequency 
in comparison to wild type, albeit this trend was not statistically significant in all cases (Fig. 3C,D, Supplementary 
Fig. S3). This trend makes the share of COs among gene conversion events independent of the length of the inter-
val (compare Fig. 2B with Fig. 3C,D, Supplementary Fig. S3).

Figure 3.  MutSα and MutLα, but not MutSβ, are major modulators of the gene conversion (GC) rate, and 
of the crossover (CO) frequency among GC events. (A,B) Frequency of GC in wild type (WT), msh2, msh3, 
msh6, mlh1, and pms1 mutants (A) at the intragenic 84 bp interval ade6-M216 × ade6-3083: UoA110 × UoA100 
(WT, n = 12), UoA478 × UoA476 (msh2-30, n = 6), UoA494 × UoA492 (msh3Δ, n = 6), UoA482 × UoA480 
(msh6Δ, n = 6), UoA364 × UoA361 (mlh1Δ, n = 8), UoA407 × UoA405 (pms1-16, n = 5), UoA828 × UoA830 
(msh2-30 mlh1Δ, n = 6); (B) at the intragenic 1,320 bp interval ade6-3083 × ade6-469: ALP733 × ALP731 
(WT, n = 20), UoA477 × UoA479 (msh2-30, n = 6), UoA493 × UoA495 (msh3Δ, n = 6), UoA481 × UoA483 
(msh6Δ, n = 6), UoA362 × UoA371 (mlh1Δ, n = 11), UoA406 × UoA410 (pms1-16, n = 6), UoA827 × UoA829 
(msh2-30 mlh1Δ, n = 6). (C,D) Frequency of CO between his3+-aim and ura4+-aim2 associated with GC events 
at ade6 in wild type (WT), msh2, msh3, msh6, mlh1, and pms1 mutants (C) at the intragenic 84 bp interval 
ade6-M216 × ade6-3083: strains as in (A); (D) at the intragenic 1,320 bp interval ade6-3083 × ade6-469: strains 
as in (B). n indicates the number of independent crosses. For details of data see Supplementary Table S3.
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Interestingly, there is also a substantial shift in CO classes among gene conversion events from mostly 
Ura− His− to mainly Ura+ His+ in mutSα-mutLα mutants at the short intervals ade6-M216 × ade6-3083 and 
ade6-149 × ade6-3049, but not at the short ade6-51 × ade6-3049 interval (Supplementary Fig. S4A–C). At long 
intervals (ade6-3083 × ade6-469, ade6-M375 × ade6-469, ade6-M216 × ade6-3049) this shift is not observed 
(Supplementary Fig. S4D–F). The change in CO classes among gene conversion events at the short intervals 
(ade6-M216 × ade6-3083 and ade6-149 × ade6-3049) is not a consequence of selective survival or the formation 
of diploid or disomic spores, because mutSα-mutLα mutants have a spore viability similar to wild type, and the 
extent of the phenotype is the same in several different mutants (Supplementary Table S3). As with intragenic 
recombination frequency, the mutSβ-deletion msh3Δ behaves just like wild type for CO outcome (Fig. 3C,D; 
p = 0.439 against wild type, two-tailed Mann-Whitney U; Supplementary Figs S4A and S4D).

The observed effects of different parental and recombinant classes amongst progeny having undergone a gene 
conversion event can be explained by envisioning a DSB 5′ or 3′ of a point mutation leading to a recombination 
intermediate (D-loop, Holliday junction), which will then be processed immediately at the break site, or ends up 
somewhat removed from the initial break site by multiple consecutive invasion steps, by branch migration, or 
both31–33. The genetic makeup of the progeny is, therefore, a compound result of processing distinct recombina-
tion intermediates in different ways. The genetic composition of wild-type and mutant progeny resulting from the 
meiotic recombination assays can be explained as different combinations of scenarios suggested previously34. For 
example, recombination between ade6-3083 and ade6-M216, which gives rise to mainly Ura− Ade+ His+ NCOs 
and Ura− Ade+ His− COs, may be explained by the model in Fig. 4A. In this model, a bias in favour of Ura− Ade+ 
His− COs stems from strand exchange/branch migration being constrained to within the region defined by the 
ade6-3083 – ade6-M216 interval and resolution of the recombination intermediate occurring by D-loop cleavage 
(Fig. 4A,C). Ura− Ade+ His+ NCOs and additional Ura− Ade+ His− COs come from HJ resolution (Fig. 4A,C).

We also considered whether this alteration of recombination outcome at ade6-M216 × ade6-3083 in 
mutSα-mutLα mutants, which leads to relatively few Ade+ His− Ura− COs and a big increase in the proportion 
of Ade+ His+ Ura+ COs (Fig. 3, Supplementary Fig. S4A), might have something to do with the complexity of the 
ade6-3083 allele. This allele consists of multiple substitution mutations and can potentially form a C/C-mismatch 
in the heteroduplex DNA during strand exchange that is less efficiently repaired during meiosis than other mis-
matches35. However, as mentioned above, a moderate shift of CO recombinant classes among intragenic events 
can also be seen at another small interval, ade6-149 × ade6-3049 (Supplementary Fig. S4B). Unlike ade6-3083, 
ade6-3049 contains only a single nucleotide difference (Supplementary Table S1) and, therefore, the complex-
ity of a given ade6 allele is unlikely to be the critical factor affecting the shift in CO recombinant class. This 
is complicated by the fact that a third small interval, ade6-51 × ade6-3049, does not show this shift between 
CO recombinant categories, similar to long intervals (Supplementary Fig. S4C–F). We think that a deficit in 
heteroduplex rejection and mismatch repair, caused by loss of msh2, could results in strand exchange/branch 
migration extending beyond the non-hotspot mutation (i.e. ade6-M216 or ade6-149) prior to D-loop cleavage/
HJ resolution, with the base-pair mismatches in the recombinant chromosomes remaining unrepaired. Together, 
these altered features could explain the increase in Ade+ His+ Ura+ COs at the ade6-M216 × ade6-3083 and 
ade6-149 × ade6-3049 intervals in mutSα-mutLα mutant crosses (Fig. 4B,C). However, why ade6-51 × ade6-3049 
would not show this behavior remains unclear; potentially the positioning of the DSBs in relation to the hotspot 
mutations could play a role here.

Recombination outcome in a msh2Δ in Saccharomyces cerevisiae has also been shown to be more complex 
than in wild type36,37. Intriguingly, in S. cerevisiae the action of Msh2 seems to be restricted to class I COs, which 
are subjected to CO interference, whereas Mus81-dependent class II COs are unchanged in msh2Δ37. Sz. pombe 
operates only a class II CO pathway via Mus81-processing, completely lacking a class I CO pathway. Nevertheless, 
the absence of Msh2 in fission yeast has a profound effect on CO frequency, and the way recombination interme-
diates are processed (Fig. 3, Supplementary Fig. S4).

Fml1 is a negative modulator of CO frequency among gene conversion events independent of 
the distance between point mutations.  The DNA helicases, Fml1 and Rqh1, are also prime candidates 
for modulating recombination frequency at intragenic intervals of different lengths12,38. However, Fml1 appar-
ently does not modulate gene conversion levels, as at all intragenic intervals tested, fml1Δ is similar to wild type 
(Fig. 5A,B, Supplementary Fig. S5A). In contrast, the RecQ-family DNA helicase Rqh1 is required for wild-type 
levels of gene conversion12. The deletion of rqh1 reduces gene conversion frequency to about a third of wild-type 
percentage at short (ade6-M216 × ade6-3083, ade6-3049 × ade6-469) intervals, and to about a tenth of wild-type 
frequency at the long ade6-3083 × ade6-469 interval (Fig. 5A,B, Supplementary Fig. S5).

As with long intervals12, fml1Δ results in a ~10 percentage point increase of CO frequency among gene con-
version events at short intervals (Fig. 5C,D, Supplementary Fig. S5). The absence of Rqh1 induces moderate 
increases in CO levels among gene conversion events at the 84 bp ade6-M216 × ade6-3083 and the 1,320 bp 
ade6-3083 × ade6-469 interval, which are not statistically significant (Fig. 5C,D). However, at the 254 bp 
ade6-3049 × ade6-469 interval CO frequency among ade6+ events is raised by 17 percentage points in rqh1Δ 
(p = 3.72 × 10−9 against wild type, two-tailed Mann-Whitney U) (Supplementary Fig. S5). The ade6-3083 allele 
contains multiple point mutations and thus represents a more complex situation than the ade6-3049 allele, which 
only harbors a single point mutation. Fml1 can seemingly drive NCO pathway(s) independently of the complex-
ity of the underlying DNA sequence, because it has the same effect in crosses with complex and single-mutation 
alleles. In contrast, Rqh1 can apparently fulfill this role only at the simple ade6-3049 allele.

In Sz. pombe Fml1 has been shown to specifically limit CO formation during the late CO/NCO-decision12. 
Fml1 acts as a promotor of NCOs, likely by driving late recombination intermediates into the SDSA pathway, 
after strand invasion and DNA synthesis has happened. In accordance with this, absence of fml1 leads to an 
increase in CO among Ade+ gene conversion events, but has little effect on intragenic recombination itself (Fig. 5, 
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Supplementary Fig. S5)12. This role is independent of the size of the intragenic interval, with Fml1 driving 10–12% 
of NCO recombination in any case.

The deletion of rqh1 has a very strong meiotic phenotype, leading to reductions in intragenic recombination, 
CO, and spore viability (Fig. 5, Supplementary Fig. S5). This on its own would indicate an early role in promot-
ing strand exchange and/or DSB resection, but then Rqh1 additionally is capable of promoting NCO formation 
among ade6+ events at some intragenic intervals during later stages of recombination (Fig. 5, Supplementary 
Fig. S5). Most likely this is due to Rqh1 actually performing the following functions: (I) promotion of interho-
molog recombination events, probably in cooperation with Rad55–57 and Rlp1-Rdl1-Sws1, but independently 
of Sfr1-Swi5,34 potentially also by providing longer resection tracts39; (II) dismantling D-loops, this enables the 
release of break ends to search for homology elsewhere, starts cycles of multiple consecutive invasion steps, and 
provides opportunities for Fml1 to drive NCO formation via SDSA; and (III) branch migration of established 
D-loops and Holliday junctions, thereby promoting heteroduplex DNA formation further away from the break 
site38.

Overall, these data show that Fml1 has likely no role in modulating gene conversion levels, but drives NCO 
formation downstream after successful strand invasion and DNA synthesis. Rqh1 promotes intragenic recom-
bination, but also has moderate anti-recombinogenic activity in CO formation among gene conversion events.

In conclusion, factors directly involved in generating CO and NCO recombinants during meiosis have been 
identified and characterized in recent years12–15,22, and several inroads have been made in understanding how 

Figure 4.  Possible scenarios for CO/NCO recombination events creating Ade+ progeny from crosses with 
different ade6 heteroalleles and ura4+-aim2 and his3+-aim as flanking markers. (A,B) The two black lines 
represent double-stranded DNA of one chromatid; chromatids not involved in the depicted recombination 
event are omitted for clarity. Positions of the hotspot and non-hotspot alleles are indicated in red and light blue, 
respectively. (A) Predominant situation in wild type, where Ade+ CO recombinants are mostly Ura− His−. (B) 
Situation explaining the Ura+ Ade+ His+ progeny observed in some mutSα-mutLα mutant crosses. Extensive 
branch migration and/or multiple invasion events could cause the D-loop or Holliday Junction (HJ) eventually 
being established left of the non-hotspot allele. Subsequent processing will generate Ura+ Ade+ His+ CO 
progeny at a high frequency. (C) Frequency of possible recombination outcomes in crosses involving two ade6 
heteroalleles and flanking markers (ura4+-aim2 and his3+-aim) as shown in (A) and (B).
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template choice is regulated and executed during meiotic recombination10,34. However, we still only have a basic 
understanding of how underlying DNA sequence polymorphisms influence meiotic recombination outcomes. 
This is critically important for understanding recombination event distribution in natural populations, where any 
two parental genomes will be littered with sequence polymorphisms. Here, we demonstrate that specific DNA 
sequence differences between the two homologs strongly impact on which outcome is achieved, and that this is 
largely driven by the action of the MutS-MutL complex. This highlights the importance of the interplay between 
cis- and trans-factors in shaping the genetic diversity of a given population.

Material and Methods
Bacterial and yeast strains and culture conditions.  E. coli strains were grown on LB and SOC media 
– where appropriate containing 100 µg/ml Ampicillin40. Competent cells of E. coli strains NEB10®-beta (New 
England BioLabs Inc., Ipswich, MA, USA), and XL1-blue (Agilent Technologies, Santa Clara, CA, USA) were 
transformed following the protocols provided by the manufacturers. Sz. pombe strains used for this study are 
listed in Supplementary Table S4. Yeast cells were cultured on yeast extract (YE), and on yeast nitrogen base glu-
tamate (YNG) agar plates containing the required supplements (concentration 250 mg/l on YE, 75 mg/l on YNG). 
Crosses were performed on malt extract (ME) agar containing supplements at a final concentration of 50 mg/l41.

Different ade6 hotspot and non-hotspot sequences (Supplementary Table S1) were introduced by crossing 
the respective mutant ade6 strain with ade6+ strains carrying the ura4+ and his3+ artificially introduced markers 
(aim) (UoA95, UoA96, UoA97, UoA98)22. The point mutations in the ade6 alleles were verified by Sanger DNA 
sequencing (Source BioScience, Nottingham, UK) (Supplementary Table S1).

Using an established marker swap protocol42 the natMX6-marked rqh1Δ-G1 was derived from an existing 
rqh1Δ::kanMX6 allele43, creation of the natMX6-marked pms1-16 insertion mutant allele has been described 
previously44.

Marker cassettes to delete msh3, and msh6, and to partially delete msh2 were constructed by cloning tar-
geting sequences of these genes into pFA6a-kanMX6, pAG25 (natMX4), and pAG32 (hphMX4), respectively, 
up- and downstream of the dominant drug resistance marker45,46. The targeting cassettes were released from 
plasmids (pALo130, pALo132, pALo134) generated for this purpose by a restriction digest, and transformed 
into the strains FO652 (msh2 and msh6) and ALP729 (msh3). For specifics of strain and plasmid construction, 
please refer to Supplementary Materials. Plasmid sequences are available on figshare (https://dx.doi.org/10.6084/
m9.figshare.6949274).

Transformation of yeast strains was performed using an established lithium-acetate procedure47. All plasmid 
constructs were verified by DNA sequencing (Source BioScience plc, Nottingham, UK).

All DNA modifying enzymes (high-fidelity DNA polymerase Q5, restriction endonucleases, T4 DNA ligase) were 
supplied by New England BioLabs. Oligonucleotides were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA).

Genetic and molecular assays.  Determination of spore viability by random spore analysis and the meiotic 
recombination assay have been previously described in detail22,41.

Figure 5.  The RecQ-family helicase Rqh1, but not the FANCM-type helicase Fml1, is a major modulator of 
the gene conversion (GC) rate. Rqh1 and Fml1 are major modulators of crossover (CO) frequency among GC 
events. Frequency of GC in WT, fml1, and rqh1 deletions (A) at the intragenic 84 bp interval ade6-M216 × ade6-
3083: UoA110 × UoA100 (WT, n = 12), UoA450 × UoA447 (fml1Δ, n = 9), UoA502 × UoA499 (rqh1Δ, 
n = 6); (B) at the intragenic 1,320 bp interval ade6-3083 × ade6-469: ALP733 × ALP731 (WT, n = 20), 
ALP1133 × MCW4718 (fml1Δ, n = 15), ALP781 × ALP780 (rqh1Δ, n = 10). Frequency of CO between 
his3+-aim and ura4+-aim2 associated with GC events at ade6 in WT, fml1, and rqh1 deletions (C) at the 
intragenic 84 bp interval ade6-M216 × ade6-3083: strains as in (A); (D) at the intragenic 1,320 bp interval 
ade6-3083 × ade6-469: strains as in (B). n indicates the number of independent crosses. For details of data see 
Supplementary Table S3.
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To test whether intragenic COs exist, genomic DNA of Ura+ Ade− His+ progeny from an ade6-3083 ×  
ade6-469 (ALP733 × ALP731) cross was used to PCR-amplify the ade6 locus (oligonucleotides oUA219 
5′-AAAGTTGCATTTCACAATGC-3′ and oUA66 5′-GTCTATGGTCGCCTATGC-3′) for Sanger sequencing  
(Eurofins Scientific, Brussels, Belgium) with oUA219, oUA66, or nested oligonucleotides oUA779 5′-CTCATTA 
AGCTGAGCTGCC-3′ and oUA780 5′-AAGCTCTCCATAGCAGCC-3′.

Data presentation and statistics.  Raw data is available on figshare (https://doi.org/10.6084/m9.figshare. 
6949274). Line graphs were produced using Microsoft Excel 2016 (version 16.0.4638.1000, 32-bit). Box-and 
-whisker plots were created in R (version i386, 3.0.1) (http://www.r-project.org/) using the standard settings of 
the boxplot() function34. The lower and upper ‘hinges’ of the box represent the first and third quartile, and the bar 
within the box indicates the median (=second quartile). The ‘whiskers’ represent the minimum and maximum  
of the range, unless they differ more than 1.5-times the interquartile distance from the median. In the latter 
case, the borders of the 1.5-times interquartile distance around the median are indicated by the ‘whiskers’ and 
values outside this range (‘outliers’) are shown as open circles. R was also used to compute Kruskal-Wallis test 
and Tukey’s Honest Significant Differences employing the kruskal.test() and TukeyHSD() functions, respectively. 
Mann-Whitney U tests were performed as previously described34.
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Specifics of yeast strain and plasmid construction 
The open reading frame of msh2 (SPBC19G7.01c) overlaps with the open reading frame of cwf14, 
to avoid potentially affecting Cwf14 expression and function only a small portion of the 5’ end of 
msh2 was deleted. A targeting cassette for msh2 was constructed by cloning an upstream flanking 
sequence of msh2 (PCR using oligonucleotides oUA47 5’-AATTAACAGCTGCTTTAGAAAGTTCCCACC-3’ 
and oUA48 5’-AATTAAGGATCCGCATTCGAACTATTAAACACC-3’ on genomic DNA of ALP1594) digested 
with PvuII and BamHI into pAG321 linearized with PvuII and BamHI. The resulting plasmid 
(pALo129) was linearized by digesting with SacI and SpeI and a part of the coding sequence of 
msh2 (PCR using oligonucleotides oUA49 5’-AATTAAGAGCTCGTTTTCTAGGAATTTTACGTTGC-3’ and 
oUA50 5’-AATTAAACTAGTCAAGTTCAACATCTCGAGC-3’ on genomic DNA of ALP1594) digested with 
SacI and SpeI was inserted by standard cloning to give pALo130. The transformation cassette was 
released by a PvuII-SpeI digest and transformed into the standard lab strain FO652. This construct 
removes the 242 bps at the very 5’ end of the msh2 coding sequence plus an additional 299 bps 
upstream of the Start codon. Correct integration was monitored by selection for hygromycin B 
resistance and verified by PCR; all strains carrying the msh2-30::hphMX4 insertion mutation are 
derived by crossing from the original transformant (UoA459). 
A deletion cassette for msh3 (SPAC8F11.03) was constructed by cloning an upstream flanking 
sequence of msh3 (PCR using oligonucleotides oUA51 5’-AATTAACAGCTGCACGATGTAAAGAGTAGC-3’ 
and oUA52 5’-AATTAAGGATCCGCTCAACATAGATTTGTAACG-3’ on genomic DNA of ALP1594) digested 
with PvuII and BamHI into pAG251 linearized with PvuII and BamHI. The resulting plasmid 
(pALo131) was linearized by digesting with SacI and SpeI and a downstream flanking sequence of 
msh3 (PCR using oligonucleotides oUA53 5’-AATTAAGAGCTCGAAGAAATCTGAGAGAGAGC-3’ and 
oUA54 5’-AATTAAACTAGTCTAAAAGAGCAGAGCAAACC-3’ on genomic DNA of ALP1594) digested with 
SacI and SpeI was inserted by standard cloning to give pALo132. The transformation cassette was 
released by a PvuII-SpeI digest and transformed into the standard lab strain ALP729. This 
construct almost completely removes the msh3 coding sequence: at the 5’ end an additional 37 
bps upstream of the Start codon are deleted, and at the 3’ end the last 12 bps of the coding 
sequence are retained. Correct integration was monitored by selection for CLONNAT-resistance 
and verified by PCR; all strains carrying the msh3∆-32::natMX4 deletion are derived by crossing 
from the original transformant (UoA460). 
A deletion cassette for msh6 (SPCC285.16c) was constructed by cloning an upstream flanking 
sequence of msh6 (PCR using oligonucleotides oUA55 5’-AATTAACAGCTGTTCTCTTTGCTGGTTTC-3’ 
and oUA56 5’-AATTAAGGATCCGAACAAGTGTTGGTTTTGG-3’ on genomic DNA of ALP1594) digested 
with PvuII and BamHI into pFA6a-kanMX62 linearized with PvuII and BamHI. The resulting plasmid 
(pALo133) was linearized by digesting with SacI and SpeI and a downstream flanking sequence of 
msh6 (PCR using oligonucleotides oUA57 5’-AATTAAGAGCTCACCTCTCATACTTGATTCG-3’ and  
oUA58 5’-AATTAAACTAGTCGTTACGAATAATGGAACG-3’ on genomic DNA of ALP1594) digested with 
SacI and SpeI was inserted by standard cloning to give pALo134. The transformation cassette was 
released by a PvuII-SpeI digest and transformed into the standard lab strain FO652. This construct 
almost completely removes the msh6 coding sequence: at the 5’ end an additional 4 bps upstream 
of the Start codon are deleted, and at the 3’ end the last 9 bps of the coding sequence are 
retained. Correct integration was monitored by selection for G418-resistance and verified by PCR; 
all strains carrying the msh6∆-34::kanMX6 deletion are derived by crossing from the original 
transformant (UoA461). 

All plasmid constructs were verified by DNA sequencing (Source BioScience plc, 
Nottingham, UK). DNA modifying enzymes (high-fidelity DNA polymerase Q5, restriction 
endonucleases, T4 DNA ligase) were supplied by New England BioLabs. Oligonucleotides were 
obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). 

Plasmid sequences are available online as supporting material 
(https://dx.doi.org/10.6084/m9.figshare.6949274). 

 

https://dx.doi.org/10.6084/m9.figshare.6949274
https://dx.doi.org/10.6084/m9.figshare.6949274
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Supplementary Figure S1. Intragenic COs between the 3083 and the 469 point mutations in ade6 
could not be confirmed. The ade6 locus was sequenced in 32 Ade- Ura+ His+ colonies from an 
ade6-3083×ade6-469 (ALP733×ALP731) cross, no instances carrying both mutations were 
recorded. wt (wild type), 3083, and 469 in bold indicate the status of the sequence confirmed by 
Sanger sequencing at the 5’ and 3’ ends, respectively. At the 3’ end, the presence of 469 was 
assumed in some cases (not bold, black) based on the colony being Ade- and having a wt 
sequence at the 5’ end. 
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Supplementary Figure S2. MutLα is a major modulator of gene conversion (GC) rate. Frequency 
of GC in wild type (WT), and mlh1∆. (A) at the intragenic 33 bp interval ade6-149×ade6-3049: 
UoA122×UoA497 (WT, n = 6), UoA368×UoA512 (mlh1∆, n = 6); (B) at the intragenic 53 bp interval 
ade6-3049×ade6-51: UoA120×UoA463 (WT, n = 6), UoA366×UoA511 (mlh1∆, n = 6); (C) at the 
intragenic 1,335 bp interval ade6-M375×ade6-469: ALP1541×ALP731 (WT, n = 16), 
UoA510×UoA371 (mlh1∆, n = 6); (D) at the intragenic 1,168 bp interval ade6-M216×ade6-3049: 
UoA99×UoA123 (WT, n = 12), UoA368×UoA361 (mlh1∆, n = 12); n indicates the number of 
independent crosses. For details of data see Supplementary Table S3. 
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Supplementary Figure S3. MutLα is a major modulator of crossover (CO) frequency among gene 
coversion (GC) events. Frequency of CO between his3+-aim and ura4+-aim2 associated with GC 
events at ade6 in wild type (WT), and mlh1∆. (A) at the intragenic 33 bp interval ade6-149×ade6-
3049: UoA122×UoA497 (WT, n = 6), UoA368×UoA512 (mlh1∆, n = 6); (B) at the intragenic 53 bp 
interval ade6-3049×ade6-51: UoA120×UoA463 (WT, n = 6), UoA366×UoA511 (mlh1∆, n = 6); (C) 
at the intragenic 1,335 bp interval ade6-M375×ade6-469: ALP1541×ALP731 (WT, n = 16), 
UoA510×UoA371 (mlh1∆, n = 6); (D) at the intragenic 1,168 bp interval ade6-M216×ade6-3049: 
UoA99×UoA123 (WT, n = 12), UoA368×UoA361 (mlh1∆, n = 12); n indicates the number of 
independent crosses. For details of data see Supplementary Table S3. 
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Supplementary Figure S4. Distribution of non-crossover (NCO; Ura+ His- & Ura- His+) and 
crossover (CO; Ura+ His+ & Ura- His-) classes among Ade+ gene conversion (GC) events in wild 
type (WT), msh2, msh3, msh6, mlh1, and pms1 mutants (percentages in each class are shown as 
means ± Std. Dev.. (A) at the intragenic 84 bp interval ade6-M216×ade6-3083: UoA110×UoA100 
(WT, n = 12), UoA478×UoA476 (msh2-30, n = 6), UoA494×UoA492 (msh3∆, n = 6), 
UoA482×UoA480 (msh6∆, n = 6), UoA364×UoA361 (mlh1∆, n = 8), UoA407×UoA405 (pms1-16, n 
= 5), UoA828×UoA830 (msh2-30 mlh1∆, n = 6); (B) at the intragenic 33 bp interval ade6-
149×ade6-3049: UoA122×UoA497 (WT, n = 6), UoA368×UoA512 (mlh1∆, n = 6); (C) at the 
intragenic 53 bp interval ade6-3049×ade6-51: UoA120×UoA463 (WT, n = 6), UoA366×UoA511 
(mlh1∆, n = 6); (D) at the intragenic 1,320 bp interval ade6-3083×ade6-469: ALP733×ALP731 
(WT, n = 20), UoA477×UoA479 (msh2-30, n = 6), UoA493×UoA495 (msh3∆, n = 6), 
UoA481×UoA483 (msh6∆, n = 6), UoA362×UoA371 (mlh1∆, n = 11), UoA406×UoA410 (pms1-16, 
n = 6), UoA827×UoA829 (msh2-30 mlh1∆, n = 6); (E) at the intragenic 1,335 bp interval ade6-
M375×ade6-469: ALP1541×ALP731 (WT, n = 16), UoA510×UoA371 (mlh1∆, n = 6); (F) at the 
intragenic 1,168 bp interval ade6-M216×ade6-3049: UoA99×UoA123 (WT, n = 12), 
UoA368×UoA361 (mlh1∆, n = 12); n indicates the number of independent crosses. For details of 
data see Supplementary Table S3. 
 

 
Supplementary Figure S5. Rqh1 and Fml1 modulating meiotic recombination outcome at the 
intragenic 254 bp interval ade6-3049×ade6-469: (A) Frequency of gene conversion (GC) in wild 
type (WT), fml1, and rqh1 mutants, UoA120×ALP731 (WT, n = 31), ALP1716×MCW4718 (fml1∆, n 
= 11), MCW6587×ALP780 (rqh1∆, n = 10); (B) Frequency of crossovers (CO) among GC events at 
ade6 in wild type (WT), fml1, and rqh1 mutants, crosses as in (A). n indicates the number of 
independent crosses. For details of data see Supplementary Table S3. 
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Supplementary Table S1. Sequence and position (counted from the A of the start codon ATG as 
first position) of ade6 point mutations (indicated in bold) 
allele position DNA sequence reference 
ade6-M216 G47A ggtcaattggAccgaatgatg Szankasi et al., 19883 
ade6-M375 G133T acaaattgatTgaggacgtga Szankasi et al., 19883 
ade6-M26 G136T aattgatggaTgacgtgagca Szankasi et al., 19883 
ade6-3074 G136T/G142C aattgatggaTgacgtCagcacattga Steiner & Smith, 20054 
ade6-3083 A131G/G134T/G136T/G142C

/G144T/A146G/A148C 
aaattgGtgTaTgacgtCaTcGcCttgatgc Steiner & Smith, 20054 

ade6-704a T645A ataatgtttgAcatttagtat Park et al., 20075 
ade6-52b G796A tttactcaacAaaattgctcc Steiner et al., 20096 
ade6-149 C1181T atcatgggttTggattctgat Schär & Kohli, 19937 
ade6-3049 C1214A aaagatgctgAcgtcatttta Steiner & Smith, 20054 
ade6-51 C1267T tgtttcagctTaccgcacacc Schär et al., 19938 
ade6-469 C1468T tcagatgcctTgaggtgtccc Szankasi et al., 19883 
apreviously estimated by positional mapping to be C846A7; theoretically both, T645A and C846A, create a UGA stop codon suppressible 
by sup3-55. 
bpreviously reported as T956C8 
 
Supplementary Table S4. Yeast strain list  
Strain  Relevant genotype Origin 
ALP729 h+S arg3-D4 his3-D1 leu1-32 ura4-D18 lab strain9 
ALP731 h-smt0 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 Lorenz et al., 201010 
ALP733 h+S ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 Lorenz et al., 201010 
ALP780 h-smt0 rqh1∆::kanMX6 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 Lorenz et al., 201411 
ALP781 h+S rqh1∆::kanMX6 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 Lorenz et al., 201411 
ALP1133 h+S fml1∆::hphMX4 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 Lorenz et al., 20129 
ALP1541 h+N ade6-M375 ura4+-aim2 his3-D1 leu1-32 ura4-D18 Lorenz et al., 20129 
ALP1594 h-smt0 ade7-50 arg3-D4 his3-D1 ura4-D18 lab strain12 
ALP1716 h+S fml1∆::hphMX4 ura4+-aim2 ade6-3049 his3-D1 leu1-32 ura4-D18 this study 
FO652 h-smt0 arg3-D4 his3-D1 leu1-32 ura4-D18 lab strain11 
FO1285 h+N ade6-M26 ura4+-aim2 arg3-D4 his3-D1 leu1-32 ura4-D18 lab strain 
MCW4718 h-smt0 fml1∆::hphMX4 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 Lorenz et al., 20129 
MCW6587 h+S rqh1∆::kanMX6 ura4+-aim2 ade6-3049 his3-D1 leu1-32 ura4-D18 this study 
UoA95 h+S ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA96 h-smt0 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA97 h+S his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA98 h-smt0 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA99 h+S ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA100 h-smt0 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA104 h+S ade6-3074 ura4+-aim2 arg3-D4 his3-D1 ura4-D18 this study 
UoA106 h+S ade6-3074 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA110 h+S ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA112 h+S ade6-704 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA115 h-smt0 ade6-704 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA116 h+S ade6-52 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA119  h-smt0 ade6-52 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA120 h+S ade6-3049 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA122 h+S ade6-3049 his3+-aim arg3-D4 his3-D1ura4-D18  this study 
UoA123 h-smt0 ade6-3049 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA361a h-smt0 mlh1∆::kanMX6 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA362a h+S mlh1∆::kanMX6 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA364a h+S mlh1∆::kanMX6 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA366a h+S mlh1∆::kanMX6 ade6-3049 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA368a h+S mlh1∆::kanMX6 ade6-3049 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA371a h- mlh1∆::kanMX6 his3+-aim ade6-469 arg3-D4 his3-D1 ura4-D18 this study 
UoA405b h-smt0 pms1-16::natMX4 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA406b h+S pms1-16::natMX4 ura4+-aim2 ade6-3083 his3-D1 leu1-32 ura4-D18 this study 
UoA407b h+S pms1-16::natMX4 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA410b h-smt0 pms1-16::natMX4 his3+-aim ade6-469 arg3-D4 his3-D1 ura4-D18 this study 
UoA447 h-smt0 fml1∆::natMX6 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA450 h+S fml1∆::natMX6 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA459 h-smt0 msh2-30::hphMX4 arg3-D4 his3-D1 leu1-32 ura4-D18 this study 
UoA460 h+S msh3∆-32::kanMX6 arg3-D4 his3-D1 leu1-32 ura4-D18 this study 
UoA461 h-smt0 msh6∆-34::natMX4 arg3-D4 his3-D1 leu1-32 ura4-D18 this study 
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UoA463 h-smt0 ade6-51 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA476 h-smt0 msh2-30::hphMX4 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA477 h+S msh2-30::hphMX4 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA478 h+S msh2-30::hphMX4 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA479 h-smt0 msh2-30::hphMX4 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA480 h-smt0 msh6∆-34::natMX4 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA481 h+S msh6∆-34::natMX4 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA482 h+S msh6∆-34::natMX4 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA483 h-smt0 msh6∆-34::natMX4 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA492 h-smt0 msh3∆-32::kanMX6 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA493 h+S msh3∆-32::kanMX6 ade6-3083 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA494 h+S msh3∆-32::kanMX6 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA495 h-smt0 msh3∆-32::kanMX6 ade6-469 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA497 h-smt0 ade6-149 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA499 h-smt0 rqh1∆-G1::natMX6 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA502 h+S rqh1∆-G1::natMX6 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA510 h+N mlh1∆::kanMX6 ura4+-aim2 ade6-M375 his3-D1 leu1-32 ura4-D18 this study 
UoA511a h-smt0 mlh1∆::kanMX6 ade6-51 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA512a h-smt0 mlh1∆::kanMX6 ade6-149 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA827a h+S mlh1∆::kanMX6 msh2-30::hphMX4 ura4+-aim2 ade6-3083 his3-D1 leu1-32 ura4-D18 this study 
UoA828a h+S mlh1∆::kanMX6 msh2-30::hphMX4 ade6-3083 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
UoA829a h+S mlh1∆::kanMX6 msh2-30::hphMX4 his3+-aim ade6-3083 arg3-D4 his3-D1 ura4-D18 this study 
UoA830a h-smt0 mlh1∆::kanMX6 msh2-30::hphMX4 ade6-M216 ura4+-aim2 his3-D1 leu1-32 ura4-D18 this study 
UoA861 h+S ade6-M375 his3+-aim arg3-D4 his3-D1 ura4-D18 this study 
amlh1∆ strains are derivatives of OL93713, provided as FY18813 by the National BioResource Project (NBRP) of the MEXT, Japan. 
bpms1 insertion mutant strains are derivatives of PRS30114, provided as FY18790 by the National BioResource Project (NBRP) of the 

MEXT, Japan. 
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